
FreeDOM: a New Baseline for the Web

Raymond Cheng, Will Scott, Arvind Krishnamurthy, Thomas Anderson
University of Washington

{ryscheng,wrs,arvind,tom}@cs.washington.edu

ABSTRACT
Free web services often face growing pains. In the current
client-server access model, the cost of providing a service
increases with its popularity. This leads organizations that
want to provide services free-of-charge to rely to donations,
advertisements, or mergers with larger companies to cope
with operational costs.

This paper proposes an alternative architecture for deploy-
ing services that allows more web services to be offered for
free. We leverage recent developments in web technologies
to combine the portability of the existing web with the user-
powered scalability of distributed P2P solutions. We show
how this solution addresses issues of user security, data shar-
ing, and application distribution. By employing an easily
composable communication interface and rich storage per-
missions, the FreeDOM architecture encourages flexible in-
teractions between applications while enforcing privacy con-
trols. We demonstrate the applicability of this architecture
by presenting a SQL database and a community-supported
Wiki as case studies.

Categories and Subject Descriptors
C.2.4 [Distributed Systems]: Distributed applications

General Terms
Design, Reliability

1. INTRODUCTION
Free web services, such as Wikipedia and OpenStreetMap,

are some of the most influential sources of information in the
world. By offering open distribution and a rich collaborative
environment, these services have provided value to count-
less individuals and organizations, and they have in turn be-

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
Hotnets ’12, October 29–30, 2012, Seattle, WA, USA.
Copyright 2012 ACM 978-1-4503-1776-4/10/12 ...$10.00.

come platforms for further innovation. For example, rather
than investing in the capital-intensive effort of mapping the
world, companies like Apple and Foursquare can leverage
OpenStreetMap maps, allowing them to focus on their core
business. As open source software enables new systems to
build on existing libraries, free web services can allow new
services to leverage community contributions.

However, unlike open source software, free web services
aren’t really free. Wikipedia must raise large amounts of
money to support its server operations and bandwidth costs.
Some organizations, like Wordpress, freely release the tech-
nology for their service, but leave it up to users to handle
hosting costs. Many developers of free apps are faced with
a dilemma: write a popular app and lose a little money,
write a viral app and lose a lot of money. As the success of
Wikipedia has shown, there can be enormous value to soci-
ety and the rest of the web from services that do not leverage
their data for financial gain. However, the number of free
web services will remain very small if they all must fund
their own operations and growth.

Peer-to-peer (P2P) technologies provide a way to distribute
data in a cheap and scalable manner, where resources scale
with the user community. However, most P2P systems lack
the portability, accessibility, and ease of use of the web’s
client-server model. Heterogeneity in devices, operating sys-
tems, and network configurations, makes the P2P model pro-
hibitive for most developers.

While it is not our goal to remove all of the costs of de-
veloping a free web service, we do want to make it possible
to scale web applications at very low cost. We leverage a
number of technology trends in support of our vision. The
explosion of new APIs and browser capabilities have trans-
formed the Web from a collection of static pages to a set
of rich web applications, written within a write-once-run-
anywhere framework. Particularly interesting is the intro-
duction of the ability for client browsers to directly commu-
nicate with other client browsers, using technologies such as
WebRTC [6], Socket APIs, and RTMP [4].

In this paper, we propose an architecture for browser-based
services that exposes flexibility beyond a traditional client-
server model. This architecture is structured as a set of com-
mon services and a support library for applications. We ex-

1

plain the primary benefits gained by this model: low cost
scaling, user privacy, application resiliency, and ease of de-
velopment, and why we believe it is important to create these
services and popularize this broader form of web communi-
cation in the near future.

This architecture evolved from the development of a dis-
tributed database application, presented in Section 4. Our
original goal was to offload computation from the server by
sharing client caches. We realized that much of the work
could be abstracted to provide a service layer for a broader
class of applications. The FreeDOM model in this paper is
in early development, and the APIs and services we present
are not finalized implementations.

In Sections 2 and 3 we motivate and explain our design.
We then present our distributed SQL database that runs across
browsers, and a model for a distributed wiki application as
case studies of the FreeDOM model in Section 4. Section
6 discusses context and related work, and Section 7 con-
cludes.

2. MOTIVATION
FreeDOM leverages evolving web standards in order to

empower developers to develop low cost self-scaling web
services. Wikipedia spent $1.8 million just on Internet host-
ing from July 2010 to June 2011, relying entirely on finan-
cial donations to support the foundation [1]. As existing P2P
software has shown, there exist ample excess resources on
end-hosts that can be leveraged to provide high-value ser-
vices.

We hope that FreeDOM can lower the barrier of entry
to community-supported applications. These applications
should operate seamlessly with the existing web experience,
and require no extra effort from the user’s point of view. For
example, there is no need to install a plugin or third-party
software, as all of the necessary runtime elements now ex-
ist in the browser. Instead, users participate by accessing a
FreeDOM-enabled web application as they would any other
cloud-backed web application. While there are a few widely
used open source web applications today, we believe the web
can easily support the same thriving environment that sur-
rounds Linux, where developers contribute and build upon
existing services.

Perhaps just as exciting is the possibility of a new class
of applications that are enabled by the evolving capabilities
of the browser. By detaching applications from the strict
client-server model where users and their data are inherently
tied to the server’s infrastructure, we envision more flexible
and interconnected applications. The FreeDOM architecture
offers a number of additional benefits:
• User-controlled data

Modern web services collect a growing amount of per-
sonal data. In part this is encouraged by the economics
of supporting the service. Users tend to be at the whim
of the web application, which can decide how much con-
trol a user ultimately has over their own data. This fact

can lead to both lock in and violations of privacy [18].
The FreeDOM data model keeps users in control of their
data. We remove the motivation for applications to exploit
users for revenue. Furthermore, we can integrate privacy-
preserving mechanisms like Tor [9].

• Self-scaling infrastructure
There exists a wide body of research into scalable storage
systems, such as distributed hash tables [17, 16] and so-
cial backup services [15]. By integrating with the web,
these applications can leverage the storage, network, and
computational resources of other users to create interest-
ing hybrid architectures. Self-scaling storage systems can
be used to mitigate flash crowds, employ smarter caching
techniques, improve locality of data, and of course lower
operating costs.

• Resilient connectivity
Research has shown that the Internet suffers from frequent
partial outages [14]. When a user accesses a traditional
web app, it is up to the application developer to employ
smart failover strategies. These solutions can entail sig-
nificant engineering costs and code complexity for each
additional “9” of reliability. By leveraging the inherent
distribution of users across the globe, FreeDOM applica-
tions can directly employ intelligent routing schemes that
react to partial failures [5]. By removing dependencies
on central points of failure, distributed web apps may also
offer better DoS resistance.

• Composable services
Modern web applications are large vertical silos, contain-
ing both the application itself and all user data. Some
services may expose parts of their functionality through
custom outward-facing API’s. This practice places the
burden on third-party developers to support each custom
API with which they want to interact. The FreeDOM
model encourages a common data sharing mechanism so
that new services can be composed of common founda-
tional elements, like a reliable storage system or a social
graph. We see this model as a successor to Unix pipes,
where individual services can be chained together to pro-
duce higher level functionality with minimal work.

2.1 Why Now?
Web technologies have reached the level where they can

provide a rich environment for applications and services.
The browser as a platform is an enticing environment be-
cause the assumption of untrusted code allows applications
to be run without worrying about risks to the user. Now that
this technology exists, our work aims to broaden the class of
applications supported by the web.

To motivate the need for FreeDOM, we must ask what the
browser won’t provide by itself. The broad answer is that
browsers are not going to solve issues of client-to-client re-
source usage, since they are still driven by a client-server

2

Browser

Wiki

DHT Ident

Browser

Wiki

DHT Ident

Browser

Wiki

DHT Ident

Server

Figure 1: Example FreeDOM service composition. A wiki
application interacts not only with a central server, it also re-
lies on other services for identity and storage. The shaded
portion of applications represents the common FreeDOM li-
brary.

model. Likewise, browsers do not provide support for ar-
bitrary distribution of data, or a way to communicate with
other services in a generic way.

However, browsers do provide the technology needed to
solve these problems. In particular, WebRTC provides a
mechanism for direct communication between untrusted web
applications. NaCl, a Chrome technology, allows legacy li-
braries written in almost any language to be run safely in
a web context. Proposals like web components [8] and a
standard method for message passing between web sites are
moving towards composability and interaction between ser-
vices. FreeDOM aims to solve the remaining problems needed
to support free, community driven services.

FreeDOM represents an alternative to the datacenter-centric
cloud model now prevalent in industry. We believe that all of
the benefits of FreeDOM - privacy, low barrier of entry de-
velopment, resilient connectivity, and composable services
- are desirable to both developers and users, and that our
model can provide a viable alternative for services currently
forced to run in the cloud.

3. DESIGN OVERVIEW
The FreeDOM model can be instantiated as a common li-

brary that resides within applications. This library exposes a
FreeDOM API above those normally found in the browser,
providing inter-app and inter-user communication. The Free-
DOM library needs no additional privileges beyond those of
installed apps themselves.

A FreeDOM application consists of a set of files that can
be rendered in the context of a web browser. Typically, it
will consist of HTML files, Javascript, images, and style in-
formation. The power of the FreeDOM model comes from
the ability of different applications to easily interact, and in a
powerful set of core services offering reliable storage, cross-
browser communication, access policies, and identity man-
agement.

3.1 System Components

3.1.1 Permissions and Storage Policy
There exist a number of privileged browser API’s, such

as geolocation, persistent storage, and networking that are
currently protected from arbitrary access. Applications must
request permission from the user to access these privileged
API’s. Furthermore, individual permissions may be revoked
at any time by the user. FreeDOM exposes a number of ad-
ditional services such as distributed storage, that follow the
existing permissions model. Regardless of the user’s choice,
FreeDOM exposes a single API to the developer that will al-
ways work. For example, a user may use Google, Facebook,
or a PKI as their identity provider. In all cases, the decision
is masked by the FreeDOM API for seemless operation.

Additionally, we believe that in a community-supported
service, users must be able to have control over the behavior
of an application. They must be able to protect themselves
from participating in illegal activities, such as inadvertently
hosting illicit content. In general, it should be up to the appli-
cation developer to ensure that mechanisms are put in place
to remove content. However, users must always have the
option to block specific content, communication channels,
or to uninstall and purge an entire application. Ultimately,
users and developers are still liable for their own actions us-
ing community resources.

3.1.2 Application Distribution
Applications are distributed as signed archives, as they are

in the current model for browser applications and extensions.
We plan to create an app management service to help police
applications and mitigate spam and malware. Such a service
is able to use social channels to suggest and retrieve applica-
tions, and blacklists to protect against malware.

With FreeDOM’s authentication mechanism, developers
can opt to distribute updates through any means. Regardless
of the source of the application, the browser can easily verify
the signature of update packages, ensuring that the package
was signed by the desired developer. FreeDOM applications
can thus be hosted from curated app stores, through social
channels, or directly from other peers.

3.1.3 Cross-app data sharing
Much like Unix pipes, FreeDOM provides a standard mech-

anism for inter-app communication. FreeDOM applications
send and receive messages from a designated location in the
application. This mechanism, along with a simplified dis-
covery process, allows applications to easily invoke other
services. FreeDOM provides intermediation of this commu-
nication, allowing for dynamic binding of services not based
on the type of interface. Like stdin/stdout, the receiver is
responsible for interpreting transmitted data. Applications
may also share data through the storage service, much like a
traditional operating system.

Several technologies help with this design. Data can be

3

stored with the browser’s filesystem API and referenced via
a URL. The URL serves as a capability to access data from
other applications. Similarly, the web’s postMessage prim-
itive allows for cross application communication, but addi-
tional work is required in FreeDOM to provide fine grain
access controls beyond those enforced by the same origin
policy.

3.1.4 Reliable storage
Reliable storage is an important building block for many

community driven applications, since the ability to retrieve
resources from other users rather than a central server is crit-
ical in minimizing service cost. Storage in the FreeDOM
model is a service exposed to other applications; requests to
the service are communicated as with other services.

Browsers use several mechanisms for storage today. Local
storage provides a key-value store accessible to both trusted
and untrusted applications. Additional APIs exist in the form
of WebSQL, IndexDB, and a Filesystem API. The last, while
not standardized, provides a sandboxed file abstraction and
allows stored objects to be later accessed as web resources.
These mechanisms are similar to the FreeDOM service, but
the FreeDOM service also manages access between applica-
tions and controls when applications can interact with each
others data. The ability to share stored data follows from our
view that free services must be composable.

3.1.5 Messaging
Communication between clients is an important enabler

for a large class of applications and is needed for our vision
of community supported services. The pragmatic approach
to messaging is to provide it as a service, and allow messages
to be transported by whichever methods are available.

Technically, message passing requires both a format and a
transport mechanism. The format of choice for web applica-
tions has standardized on JSON, and there is little reason to
deviate from that standard. Browsers provide multiple built-
in transport mechanisms which can be (or will shortly be
able to be) used for communication with peers. The W3C
standardized protocol is WebRTC, which can set up client-
client channels. Many browsers also include mechanisms for
extensions to make use of native Socket APIs. Additionally,
we foresee services which offer transport over social net-
works, for example using Google chat, Facebook messages,
or Twitter direct messages.

The messaging API enforces finer grained policies that
dictate how applications can communicate. For example, the
transport layer should never allow applications to setup arbi-
trary network sockets to Internet hosts. Instead, the security
policy dictates which users an application can communicate
with. A default policy for untrusted applications would al-
low them to interact with remote instances of themselves.

3.1.6 API
The goal of the FreeDOM API is to make it easy for ser-

vices to find each other, interact, and manage permissions.
This goal results in several design choices which we be-
lieve together construct a powerful API. First, service in-
terfaces need to allow extensibility of both producers and
consumers. The communication API should both allow an
application to easily initiate communication with instances
of itself running in other browsers, and allow a new service
to offer transport. Second, APIs should be implemented so
that applications do not have to worry about permissions.
If an application attempts to write to storage, some storage
provider should always be available. The application must
be able to know which service it is talking to, as in the case
of a back up service wanting to ensure data is indeed saved
reliably. Third, the API should be simple to encourage adop-
tion. An identity API should not expose a complex OAuth
API, but instead should directly provide an identity key or
provide attestation.

4. CASE STUDIES

4.1 Collaborative WebDB
In order to explore the challenges and requirements of the

FreeDOM architecture, we prototyped and implemented a
distributed static SQL database management system (DBMS)
called Collaborative WebDB. It runs as an untrusted web ap-
plication in the browser and provides a read-only SQL in-
terface to other applications. The authoritative copy of the
database is hosted on a remote server, but instances of Col-
laborative WebDB can cache table pages during the course
of operation. Clients independently generate query plans
that fetch data on-demand from local and peer caches as
well as the server database. In the development of this ser-
vice we were able to visit many of the different architectural
challenges present in the FreeDOM model: How should in-
stances of the application communicate? How do clients
know what data other clients have? What trust model and
permissions does such an application require?

Traditional databases are demanding and highly perfor-
mant pieces of software, and Collaborative WebDB demon-
strates the ability of modern web browsers to support com-
plex applications. Unique to the FreeDOM model, Collabo-
rative WebDB takes advantage of the other peers in the net-
work, offloading query execution from the server and run-
ning the entire SELECT pipeline in the browser. Many data
collections follow a zipf access pattern, which means that
”hot” data (such as the items appearing on the home page
of a web store) will have high probability of being in client
caches. This makes a distributed database an appealing can-
didate for offloading server load.

4.1.1 Implementation
Collaborative WebDB was built by writing a custom data

provider to SQLite. The entire package was then compiled
into Javascript using the Emscripten compiler1. The result-
1http://github.com/kripken/emscripten/wiki

4

http://github.com/kripken/emscripten/wiki

 1

 10

 100

 0 50 100 150 200 250

Th
ro

ug
hp

ut
 (q

ps
)

Time (sec)

1 Client
2 Client (Avg.)

Server with 1 client
Server with 2 clients

Figure 2: Queries per second satisfied by the server and
clients over time in Collaborative WebDB. As pages are
cached on clients’ local machines, server load decreases over
time. Even with two clients, server workload remains the
same, while total system throughput increases.

ing Javascript file is loaded into an HTML file and run in
an untrusted context. While our experiments test the per-
formance in Javascript, it is also possible to compile the
same source into a NaCl module, requiring only minimal
changes in the communication interface between the com-
piled module and client code. On top of the database we
added a simple table viewer, which executed and displayed
SQL queries by passing messages to the database service.
We separated the viewer and DBMS in separate applica-
tions, and used HTML5 message passing to communicate
between the two layers. FreeDOM’s message passing, sup-
ported by upcoming browser support for web components,
allows the interfaces of these two services to be de-coupled,
so that the database can accept requests from clients other
than our viewer.

We also wrote a Chrome extension providing a WebRTC-
like message passing abstraction between active clients on
different computers. We used a small web-socket server to
coordinate topology and to tell clients which other clients
were using the service. With this knowledge, clients can
send messages to other peers directly.

4.1.2 Evaluation
In order to evaluate our implementation, we accessed the

Collaborative WebDB web application from multiple clients.
A server hosted a 1GB database from the TPC-H benchmark
[2], and each client ran a synthetic workload of SQL queries
selected as a random projection of columns from a random
table, at an offset. We chose offsets using a Pareto distribu-
tion parameterized by a skew coefficient of 0.5, resulting in
82% of queries referencing the first two pages of table data.
This form of distribution models many popularity rankings
in the real world. This model was chosen to emulate the us-
age pattern created from browsing through a product catalog
in an online store.

Figure 2 shows that when the experiments were started,
clients began with empty caches and the server was heavily
loaded. Over time, the server’s workload dropped, and a

growing percentage of queries could be satisfied from either
a local cache, or a peer cache. With two clients, the server
handled requests at the same rate, but the query throughput
in the system increased.

4.2 Distripedia: A User powered wiki
We have also done a paper design for a distributed wiki in

the FreeDOM model. The wiki example tackles many of the
fundamental challenges in FreeDOM. How do user accounts
and moderation work? How are updates published? What
is the developer responsible for? We found that by building
on a set of simple primitives, we could easily answer all of
these questions.

The key decision in Distripedia is splitting application logic
from data. Data, in the form of actual wiki content and his-
torical revisions, are stored with the reliable storage service,
a single DHT across all users. This service contains keys for
each page in the wiki, with a pointer to accepted revisions,
and signed by the application provider. Edits are made by
committing a new revision to the DHT, and then submitting
the new revision key to the central service. In this way, the
application developer is able to maintain control over mod-
eration and access control by choosing how to update the
signed pages in the DHT - but the service can continue to
function even when the central server unavailable.

5. DISCUSSION
While we were able to build some interesting applications

in the FreeDOM model, there still are many challenges to
solve in order to make FreeDOM applications robust, secure,
and practical.
• Portability. Portability of applications, especially ones

that access rich API’s, has long been a difficult problem.
Building web applications provides the ability to run one
application across desktops, mobile devices, and gaming
consoles alike. However as an evolving standard, most
browsers do not have identically consistent behavior, and
many implement additional browser-specific API’s. For
example, not all browsers support or plan to support NaCl,
and extension models for browsers are notoriously vendor
specific.

• Low latency services. Many distributed P2P applications
have notoriously bad latency. Hence, user-facing applica-
tions that depend on remote data must take into consid-
eration the latency of retrieving necessary data. Research
has shown that applications with poor latency drastically
impact usability [11] but techniques exist to minimize la-
tency in presence of unreliable participants [19].

• Flexibility. One major design goal for FreeDOM is to
be able to adapt to new use cases. In desktop systems,
the concept that all data is a file has proved very success-
ful, allowing disparate applications to work together. This
document was prepared through cooperation of many sep-
arate applications which collectively compose LATEX. Web

5

applications have not standardized on common commu-
nication channels in the same way. Partially this is be-
cause presentation and data are intermixed, forcing de-
sired data to be extracted from HTTP responses. Another
factor is that authorization and data are often entangled in
web APIs, further siloing applications into API specific
communication.

• Privacy. In the web, users have very primitive control
over their data. In a typical web application, the user
has no insight into how their data is stored or distributed.
While a developer may expose some subset of controls
to the user, the developer generally has free reign, only
limited by local laws and terms of service. We hope that
by allowing more services to be operated for free, there
will be less incentive or need for services to violate user
privacy.

6. RELATED WORK
Google Chrome has made great progress creating a portable

application layer on top of the web with Native Client (NaCl)
[20]. Chrome is quickly providing full native-yet-portable
APIs to applications, which along with NaCl will allow for
native apps with a common DOM-based UI to run across
platforms. Many of the developments to date have focused
on improving the web experience for isolated web applica-
tions. Our argument is the need for inter-application com-
munication, stronger user controls, and reliable storage.

Content distribution networks like Akamai [3] and Coral-
CDN [12] have explored the value of user resources. In the
case of Akamai, P2P users augment the serving capacity of
their existing CDN infrastructure. Without the financial im-
plications of charging for access to peer resources, the Free-
DOM model aligns with user incentives to support a free
service.

Several systems have developed novel models for distribut-
ing web content, ranging from fully content-centric models
like Freenet [7], to anonymous P2P publishing like Tor hid-
den services [10]. Other efforts such as hoodwink.d2 and the
Nethernet [13] have experimented with building applications
on top of existing websites. FreeDOM looks to leverage the
many lessons learned from these and other systems to build
a new robust framework that is tightly integrated with the
fabric of the web.

7. CONCLUSION
Community powered services have had an incredible im-

pact on the web and society. Unfortunately, even cloud host-
ing can be an expensive proposition for these services at
scale, which shifts developer incentives from free distribu-
tion to monetization. We have introduced an alternative model
supporting a more flexible communication pattern, which al-
lows users to directly support these services with their own
resources. Our vision takes lessons from the success of open
2http://github.com/whymirror/hoodwinkd

source software on the personal computer, which used sim-
ple API primitives and enabled easy application composi-
tion. This paper lays out the challenges faced by our ap-
proach, and then demonstrates our design with case studies
of a P2P database and a community powered wikipedia. By
tapping into powerful new web standards, we hope to em-
power an entirely new class of free, community-supported
services.

8. REFERENCES
[1] Wikimedia Foundation Annual Report. wikimedia.org, 2011.
[2] TPC Benchmark H Standard Specification, 2012.
[3] P. Aditya, M. Zhao, Y. Lin, A. Haeberlen, P. Druschel,

B. Maggs, and B. Wishon. Reliable Client Accounting for
P2P-Infrastructure Hybrids. In NSDI, 2012.

[4] Adobe. Real-Time Messaging Protocol specification.
Working draft, adobe.com, 2009.

[5] D. Andersen, H. Balakrishnan, F. Kaashoek, and R. Morris.
Resilient Overlay Networks. In SOSP, 2001.

[6] A. Bergkvist, D. C. Burnett, C. Jennings, and A. Narayanan.
WebRTC 1.0: Real-time communication between browsers.
Working draft, W3C, February 2012.

[7] I. Clarke, O. Sandberg, B. Wiley, and T. W. Hong. Freenet: a
distributed anonymous information storage and retrieval
system. In PETS, 2001.

[8] D. Cooney and D. Glazkov. Introduction to Web
Components. Working draft, W3C, May 2012.

[9] R. Dingledine and N. Mathewson. Design of a
blocking-resistant anonymity system. torproject.org.

[10] R. Dingledine, N. Mathewson, and P. Syverson. Tor: the
second-generation onion router. In USENIX Sec., 2004.

[11] J. B. Eric Schurman. The User and Business Impact of
Server Delays, Additional Bytes, and HTTP Chunking in
Web Search. In Velocity. O’Reilly, 2009.

[12] M. J. Freedman, E. Freudenthal, and D. Mazières.
Democratizing Content Publication with Coral. In NSDI,
2004.

[13] J. Hall. Passively Multiplayer Online Games. Master’s thesis,
USC, 2007.

[14] E. Katz-Bassett, C. Scott, D. R. Choffnes, I. Cunha,
V. Valancius, N. Feamster, H. V. Madhyastha, T. Anderson,
and A. Krishnamurthy. LIFEGUARD: Practical Repair of
Persistent Route Failures. In SIGCOMM, 2012.

[15] J. Quintard. Towards a worldwide storage infrastructure.
PhD thesis, University of Cambridge, September 2010.

[16] A. I. T. Rowstron and P. Druschel. Pastry: Scalable,
Decentralized Object Location, and Routing for Large-Scale
Peer-to-Peer Systems. In Spring LNCS. Vol. 2218, 2001.

[17] I. Stoica, R. Morris, D. Karger, M. F. Kaashoek, and
H. Balakrishnan. Chord: A Scalable Peer-to-Peer Lookup
Service for Internet Applications. In SIGCOMM, pages
149–160, 2001.

[18] J. Turow, J. King, C. J. Hoofnagle, A. Bleakley, and
M. Hennessy. Americans Reject Tailored Advertising and
Three Activities That Enable It. SSRN eLibrary, Sept. 2009.

[19] L. Wang, V. Pai, and L. Peterson. The Effectiveness of
Request Redirection on CDN Robustness. In OSDI, 2002.

[20] B. Yee, D. Sehr, G. Dardyk, J. B. Chen, R. Muth,
T. Ormandy, S. Okasaka, N. Narula, and N. Fullagar. Native
Client: A Sandbox for Portable, Untrusted x86 Native Code.
In IEEE Symposium on Security and Privacy, 2009.

6

http://github.com/whymirror/hoodwinkd
http://upload.wikimedia.org/wikipedia/commons/4/48/WMF_AR11_SHIP_spreads_15dec11_72dpi.pdf
http://www.adobe.com/devnet/rtmp.html
http://svn.torproject.org/svn/projects/design-paper/blocking.pdf

	Introduction
	Motivation
	Why Now?

	Design Overview
	System Components
	Permissions and Storage Policy
	Application Distribution
	Cross-app data sharing
	Reliable storage
	Messaging
	API

	Case Studies
	Collaborative WebDB
	Implementation
	Evaluation

	Distripedia: A User powered wiki

	Discussion
	Related Work
	Conclusion
	References

