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Abstract
Kineograph is a distributed system that takes a stream of
incoming data to construct a continuously changing graph,
which captures the relationships that exist in the data feed.
As a computing platform, Kineograph further supports
graph-mining algorithms to extract timely insights from
the fast-changing graph structure. To accommodate graph-
mining algorithms that assume a static underlying graph,
Kineograph creates a series of consistent snapshots, using a
novel and efficient epoch commit protocol. To keep up with
continuous updates on the graph, Kineograph includes an
incremental graph-computation engine. We have developed
three applications on top of Kineograph to analyze Twitter
data: user ranking, approximate shortest paths, and contro-
versial topic detection. For these applications, Kineograph
takes a live Twitter data feed and maintains a graph of edges
between all users and hashtags. Our evaluation shows that
with 40 machines processing 100K tweets per second, Ki-
neograph is able to continuously compute global properties,
such as user ranks, with less than 2.5-minute timeliness guar-
antees. This rate of traffic is more than 10 times the reported
peak rate of Twitter as of October 2011.

Categories and Subject Descriptors D.4.7 [Operating
Systems]: Organization and Design; D.1.3 [Programming
Techniques]: Concurrent Programming

General Terms Design, Performance

Keywords Graph processing, Distributed storage
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1. Introduction
Increasingly popular services such as Twitter, Facebook,
and Foursquare represent a significant departure from web-
search and web-mining applications that have been driving
much of the distributed systems research in the last decade.
Information available on those emerging services has two
defining characteristics. First, new information (e.g., tweets)
is continuously generated and is far more time-sensitive than
mostly-static web pages. Breaking news appears and propa-
gates quickly, with new popular activities and trending top-
ics arising constantly from real-time events in the physi-
cal world. Second, while each piece of information may
be small and contains limited textual content, rich connec-
tions between entities such as users, topics, and tweets can
be powerful in revealing important social phenomena. In-
formation search and retrieval on micro-blogs has started to
receive a lot of attention [27].

Kineograph is a distributed system designed for the need
to extract timely insights from such a continuous influx of in-
formation with rich structure and connections. Kineograph
has to address a set of new challenges. First, Kineograph
must handle continuous updates, and its computation must
produce timely results. Ideally, new updates should be re-
flected in the computed results within a short budget of 1-
2 minutes. The widely adopted batch-processing paradigm
(e.g., MapReduce [9]) optimizes for throughput and cannot
provide the needed timeliness guarantees. Second, Kineo-
graph must maintain a graph structure that captures the re-
lationships among various entities. This is particularly chal-
lenging because the graph is often large and must be main-
tained consistently while being stored in a distributed fash-
ion. Third, Kineograph must support graph-mining algo-
rithms that extract insights from the graph structure. A con-
tinuously changing graph poses a challenge for many graph-
mining algorithms. For example, most of the graph-mining
algorithms assume a static underlying graph and their results
may no longer offer the same expected meaning when oper-
ating on a constantly changing graph.



Kineograph addresses those challenges by designing a
distributed in-memory graph storage system, along with a
graph engine that supports incremental iterative propagation-
based graph mining. The distributed graph store produces re-
liable and consistent snapshots periodically, so that existing
graph-mining algorithms can be applied on a static snap-
shot. This design also decouples graph mining from graph
updates to avoid any unnecessary interference, as graph min-
ing works on existing snapshots while new updates are used
to create new ones. Leveraging the nature of graph updates, a
simple and novel epoch commit protocol with quorum-based
replication is used to handle graph updates to achieve con-
sistency and reliability efficiently, without global locking or
significant cross-server coordination. With reliable consis-
tent snapshots, computation does not need to be made deter-
ministic or replicated. Kineograph resorts to re-execution in
face of failures during graph mining. The final computation
results can be replicated using traditional primary-backup
schemes.

We have designed Kineograph to be a flexible platform,
upon which developers can build scalable graph applica-
tions using Kineograph’s APIs. We have developed three
representative applications on Kineograph with real Twitter
feeds for experimentation: TunkRank [31] for user ranking,
SP [28] for approximate shortest path, and K-exposure [27]
for controversial topic detection. We have conducted exper-
iments on a real Twitter data set that generated a graph with
more than 8 million vertices and 29 million edges, at a rate
of more than 100,000 tweets per second. Our results show
that Kineograph produces timely mining results, such that
on average the computed results reflected all tweets updated
within 2.5 minutes.

The rest of the paper is organized as follows. Sec-
tion 2 presents an overview of Kineograph, with details de-
scribed in the following sections. Section 3 explains how
Kineograph maintains and creates distributed consistent
graph snapshots. Section 4 introduces Kineograph’s graph-
computation model. Section 5 illustrates how to build appli-
cations in Kineograph, along with the description of three
representative applications we built. Section 6 describes Ki-
neograph’s support of fault tolerance, incremental expan-
sion, and decaying. Evaluations of the representative appli-
cations are reported in Section 7, followed by discussions of
related work in Section 8. We conclude in Section 9.

2. Overview
Figure 1 shows an overview of Kineograph. Raw data feeds
(e.g., tweets) come into Kineograph through a set of in-
gest nodes (step 1). An ingest node analyzes each incom-
ing record (e.g., a tweet and its associated context), creates a
“transaction” of graph-update operations, assigns a sequence
number to the transaction, and distributes operations with
the sequence number to graph nodes (step 2). Graph nodes
essentially form a reliable distributed in-memory key/value
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Figure 1. System overview.

store, with enhanced graph support. Rather than an opaque
value field, the storage engine on each graph node main-
tains with each vertex, an adjacency list as its graph struc-
ture metadata and stores separately each application’s asso-
ciated data. In addition, the storage engine supports snap-
shots. Graph nodes first store the graph updates from ingest
nodes. Afterwards, each ingest node reports the graph up-
date progress in a global progress table maintained by a cen-
tral service (step 3). Periodically, a snapshooter instructs all
graph nodes to take a snapshot based on the current vector
of sequence numbers in the progress table (step 4). This vec-
tor is used as a global logical clock to define the end of an
epoch. Graph nodes are then instructed to execute and com-
mit all stored local graph updates in this epoch following
a pre-determined order. The end result of this epoch com-
mit produces a graph-structure snapshot (step 5). Updates in
the graph structure due to epoch commit further trigger in-
cremental graph computation on the new snapshot to update
associated values of interest (step 6).

A key decision that differentiates Kineograph from ex-
isting systems is the separation of graph updates and graph
computation. This key insight leads to a simple, yet effective
system architecture. To enable the separation, Kineograph
stores the graph-structure metadata separately from the ap-
plication data associated with the graph. Graph updates mod-
ify only the metadata that defines the graph structure and are
therefore simple (e.g., adding a vertex and adding an edge).
The separation also gives rise to the epoch commit protocol
where graph nodes first store updates and then execute them
in an epoch-granularity in order to create globally consistent
snapshots on graph structures without global locks. Kineo-
graph further uses the snapshots to decouple graph computa-
tion from graph updates in a staged manner: graph computa-
tion is performed on static snapshots, greatly simplifying the
graph algorithm design. Finally, the separation of graph up-



dates and computation enables the development of separate
and simple fault tolerance mechanisms in different compo-
nents of Kineograph (as will be described in Section 6.1).

3. Creating Consistent Distributed Snapshots
Graph nodes in Kineograph consist of two layers: a storage
layer that is responsible for maintaining graph data and a
computation layer that is responsible for graph computation.
We describe the storage layer in this section and leave the
computation layer to the next.

The storage layer of graph nodes implements a distributed
key/value store, enhanced with primitive graph features. A
graph is split into a fixed number (say 512) of logical parti-
tions, which are further assigned to physical machines. Cur-
rently, graph partitioning is based on the hashing of vertex
ids, without any locality considerations. This scheme is sim-
ple and generally good for load balance. Each logical parti-
tion consists of a set of vertices, each with a set of directed
weighted edges stored in a sorted list. Edges are considered
part of the graph structure, and are added and modified by
the snapshot mechanism in the storage layer. Each vertex
also has a set of named vertex-fields that store the associated
data for each configured graph mining algorithm. The type
of values stored in vertex-fields is arbitrary, as long as it can
be serialized.

A key function provided by the storage layer is to pro-
vide consistent snapshots of graph structures. The snapshot
mechanism is implemented through cooperation among in-
gest nodes, graph nodes, and a global progress table. The in-
gest nodes in Kineograph do not just serve as simple front-
ends, but play an important role in the system. An ingest
node is responsible for turning each incoming record into
a transaction consisting of a set of graph-update operations
that might span multiple partitions (e.g., creating vertex v2,
adding an outgoing edge to vertex v1, and adding an incom-
ing edge to vertex v2). Each of those operations can be exe-
cuted entirely on the data structure associated with a vertex.
In addition, each ingest node creates a sequence of transac-
tions, each with a continuously increasing sequence number.
Those sequence numbers are used to construct a global log-
ical timestamp to decide which transactions should be in-
cluded in a snapshot and also used as the identifier for that
snapshot.

Kineograph’s snapshot mechanism implements an epoch
commit protocol that defers applying updates until an epoch
is defined, as in the following process. An ingest node sends
graph update operations to graph nodes, along with the se-
quence number of the transaction they belong to. A global
progress table keeps track of the progress made by each in-
gest node by recording a sequence number for each ingest
node. An ingest node i updates its entry to sequence number
si if it has received acknowledgments from all relevant graph
nodes that graph-update operations for all transactions up to
si have been received and stored. Periodically (say every 10
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Figure 2. An example of creating a consistent snapshot
across partition u and v.

seconds), the snapshooter takes the vector of sequence num-
bers from the current global progress table, ⟨s1, s2, . . . , sn⟩,
where si is the sequence number associated with ingest node
i, and uses it as a global logical timestamp to define the end
of the current epoch. The decision is broadcasted to all graph
nodes, where all graph updates belonging to this epoch are
processed in the same deterministic, but artificial, order in all
logical partitions. A graph-update from ingest node i with
sequence number s is included in epoch ⟨s1, s2, . . . , sn⟩ if
and only if s ≤ si holds. Even when operations on a logi-
cal partition are processed in serial, there are usually enough
logical partitions on each graph node, leading to sufficient
concurrency at the server level. Figure 2 shows an example
where partition u and v are instructed to create a consistent
snapshot by a global logical timestamp from the progress ta-
ble.

The process of creating a snapshot does not stop incom-
ing updates. Ingest nodes continuously send new graph up-
dates into the system with higher sequence numbers. The
process of (ingest nodes) dispatching and (graph nodes) stor-
ing graph-update operations overlaps with the process of cre-
ating snapshots by applying those updates. This property en-
sures that the deferred execution does not affect throughput
over a sufficiently long period of time, even though it might
introduce extra latency. Kineograph effectively batches op-
erations in a small epoch window to strike a balance between
reasonable timeliness and being able to handle high incom-
ing rate of updates. At a higher rate, batching becomes more
effective.

Consistency. The epoch commit protocol provides a non-
traditional concurrency control solution that avoids blocking
among the ingest nodes. The protocol does not require global
serialization when ingest nodes are sending transactional op-
erations, due to the simplicity of graph updates. Global se-
rialization is deferred and implicitly achieved by the snap-



shooter that retrieves global logical timestamps (a form of
vector clock) from the progress table, keeping it off the sys-
tem’s critical path. This process is fundamentally different
from existing schemes such as two-phase locking or times-
tamp ordering [30].

Kineograph guarantees atomicity in that either all oper-
ations in a transaction are included in a snapshot or none
of them are. This ensures that we cannot have a snapshot
that includes one vertex with an outgoing edge, but with no
matching incoming edge to the destination vertex. Kineo-
graph further ensures that all transactions from the same in-
gest node are processed in the same sequence number order.
It is worth pointing out that due to the separation of graph
updates and graph computation, Kineograph has to deal with
only simple graph updates when creating consistent snap-
shots and leverages the fact that each transaction consists of
a set of graph-structure updates that can each be applied on
a single vertex structure. Only in the computation phase (for
graph mining) have we seen cases where updates depend on
the states of other vertices.

In essence, the snapshot mechanism in Kineograph en-
sures consensus on the set of transactions to be included in
a snapshot and can even impose an artificial order within
that set, so that all the transactions are processed in the
same order. However, the order is artificial. For example,
graph nodes can be instructed to process all updates from
the first ingest node before processing those from the sec-
ond, and so on. This externally imposed order does not take
into account any causal relationship. It reflects neither the
physical-time order nor any causal order. We find it suffi-
cient in our case, partly because Kineograph separates graph
updates from graph mining—graph updates are usually sim-
ple and straightforward. In most cases, order does not matter
at all. Even if updates were applied in a different order, the
resulting graphs would stay the same, provided the same or-
der on all graph nodes. One important property Kineograph
ensures is deterministic vertex creation. For example, if there
is a vertex created for each Twitter user ID, that vertex has
an internal ID that depends on that Twitter user ID deter-
ministically. This way, we can create an edge from or to that
vertex even before that vertex is created, thereby eliminating
cross-operation dependencies.

4. Supporting Incremental Graph-Mining
Computation

The computation layer of graph nodes in Kineograph is re-
sponsible for executing incremental graph-mining. Compu-
tation results are updated based on recent changes in the
graph, reflected in new snapshots. Graph-mining algorithms
operate on a set of user-defined vertex-fields that store the
associated data for those algorithms.

Kineograph adopts a vertex-based computation model
[17, 18]. In this model, the data of interest is stored along
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Figure 3. Computation overview.

with vertices, and computation proceeds by processing
across vertices.

4.1 Overview
Figure 3 illustrates the overall graph mining process from
a vertex’s point of view. Initially, Kineograph uses user-
defined rules to check the vertex status compared to the pre-
vious snapshot. If the vertex has been modified (e.g., edges
added, values changed), Kineograph invokes user-specified
function(s) to compute the new values associated with the
vertex. If the value changes significantly, Kineograph will
propagate the changes to a user-defined set of vertices (usu-
ally in the neighborhood). There is an optional aggregation
phase in the computation within which a vertice might be in-
volved in graph-scale reductions to compute global values.
These can be arbitrary complex values, such as top X influ-
ential users, or the number of vertices of a certain type. The
next iteration of the computation on a vertex is also driven by
the status change, but this time it is triggered by the propaga-
tion received from other vertices. During a typical computa-
tion process, changes in user-defined vertex-fields propagate
in a sub-graph, sparked by some change in the structure of
the graph (such as adding an edge). The propagation pro-
ceeds until no status changes happen across all vertices in
the graph, which designates the termination of the computa-
tion.

To better support various graph mining algorithms that
might require different inter-vertex communication patterns,
Kineograph support the push and the pull models in the com-
putation [17, 26]. To check the status of a vertex and per-
form computation, the push model allows other vertices to
push updates to a specific vertex and a vertex in the pull
model proactively pulls data from neighboring vertices. Ki-
neograph further enhances the two models to support incre-
mental computation and efficient distributed execution.

The following subsections elaborate the details of the
computation.

4.2 Push model
In the push model, each vertex can send a partial update
to another vertex’s user-defined vertex-field. For example,
the PageRank [22] of a vertex is a weighted sum of the
PageRanks of its neighboring vertices. In the push-model,
each vertex sends its PageRank to its out-neighbors and the
system adds them together to form the total pagerank. In
incremental algorithms, each vertex sends its incremental



change. In the PageRank example, each vertex only needs
to send the difference of its current and previous PageRank.

One key feature of the push-model is the ability to per-
form sender-side aggregation. For each vertex-field, pro-
grammers can define a local aggregation function that com-
bines updates sent by several vertices to one single update
(see accumulator in Section 5). In our implementation, we
observe that sender-side aggregation could reduce more than
90% of the total RPC calls during the computation, which
shortens the overall computation time significantly.

To further support incremental computation, Kineograph
keeps track of dirty (i.e., modified) vertices for a new snap-
shot and during computation (see trigger in Section 5).
When a field is declared dirty, its update function is invoked.
The role of an update function is to calculate and push the
difference of a new value and its previous value to other ver-
tices (see updateFunction in Section 5). Kineograph keeps
track of the value that is sent to each of the neighboring ver-
tices and performs incremental computation.

4.3 Pull model
A typical vertex update function in a pull model reads the
values of its neighbor-vertices and produces a new value
for itself. If it determines the change was significant, the
function will ask the system to notify its neighbors, and the
computation propagates in the graph dynamically.

In Kineograph, to reduce the communication cost an up-
date function could read values from a specified subset of
neighboring vertices. For example, some application only
needs neighbors of a certain type or an individual vertex
(such as a newly created vertex). Likewise, the requested
data can be specified as a subset of the data associated with
the vertices. In addition, different update functions might
need different types of data: perhaps most functions require
only the value in a particular vertex-field of a neighboring
vertex, but some functions require more data, e.g., a list of
edges of a neighbor.

Kineograph schedules updates to vertices in a way that
minimizes network communications. In particular, it com-
bines requests to the same vertices (if several update func-
tions request for the same vertex) and executes the updates
only when all requested data is available. This is in con-
trast to the synchronous model where the program issues
synchronous calls to vertices while it is being executed. Re-
quests are aggressively batched so there are more chances to
merge requests and to reduce the number of RPC-calls.

Kineograph pull-model supports incremental computa-
tion by starting the computation from only the changed part
of the graph, i.e., new or updated vertices/edges.

4.4 Initializations
Users can define functions that are invoked when there
exist new vertices or new in/out-edges in a snapshot (see
initialize in Section 5). Those are used to initialize the
incremental graph computation. In the push model, it is typ-

ical to set the corresponding vertex-field to dirty, which will
subsequently lead to invoking the update function on the
vertex. Likewise, in the pull model, an initialization phase
involves asking the system to prepare the data needed to
execute an update function.

4.5 Global aggregates
In addition to vertex-based computation, Kineograph pro-
vides a mechanism to compute global values using an ag-
gregator functions that perform a distributed reduction over
all vertices. This mechanism is identical to the Aggregators
in Pregel [18] or Sync-mechanism of GraphLab [17], and
we do not discuss it in details in this paper.

4.6 Execution schedule
Kineograph is designed for frequent incremental computa-
tion steps. It adopts a scheduling mechanism similar to the
partitioned scheduler introduced in GraphLab [17]. Com-
putation proceeds by executing consecutive super-steps on
which scheduled vertices are executed across partitions.

The execution model of Kineograph can be seen as a hy-
brid of the BSP used in Pregel and the dynamic schedul-
ing championed by GraphLab. Unlike GraphLab, Kineo-
graph does not enforce computational consistency: neigh-
boring vertices can be updated in parallel. However, as Ki-
neograph does not allow direct writes to neighbors, write-
write races are not possible. In our experiments, we did not
notice the need for a stronger consistency guarantee (sequen-
tial consistency) for the computation.

Kineograph executes a defined maximum number of
super-steps at each snapshot unless the task-queues are
empty and there are no vertices to compute, which usually
implies the computation has converged. Global aggregators
are updated after each super-step.

5. Building Applications on Kineograph
Kineograph is designed to be a platform, where applications
can be built on top by having a set of functions instanti-
ated and customized appropriately. First, each ingest node
can be instantiated with a function that parses a record in
an input stream and produces a transaction consisting of
a set of graph-update operations. This function defines the
graph structure for an application. In addition to platform-
supported graph operations like add edge/vertex, it is possi-
ble for an application to define a customized graph-update
operation (e.g., increasing the weight of an edge by 10%):
the application simply provides a callback function to be
invoked when that operation is applied on a graph node in
generating a snapshot. An application can further control the
configuration of Kineograph in terms of the mapping of ver-
tex IDs to logical partitions, as well as the assignment of
logical partitions and their replicas to servers.

Second, an application can define a list of vertex-fields
as associated values for a vertex. An application can further



define a set of functions to implement a graph-mining al-
gorithm. For the push model, an application defines vertex-
fields that can be pushed to as push-fields. They have the
following attributes:

• τ defines the type of the field.
• value0 is the initial value of the field.
• initializemarks the changed vertices to initiate pushes.
• updateFunction(vertex): the function that will be

invoked by the trigger function.
• trigger(oldval : τ, newval :τ) : boolean: the

function that detects whether the field has changed
enough (dirty) to trigger an updateFunction.

• accumulator(accumValue : τ, update : τ) : τ
accumulates two push updates into one.

For the pull model, an application defines two functions.

• initialize provides an update function to process
changed vertices and generates a list of vertex-request
for other vertices (i.e., pull). The vertex-request spec-
ifies the data fields required from a vertex.

• updateFunction(vertex,List[readonly-vertex])

modifies the data field of a vertex. It is passed a
list of read-only vertices that correspond to the list of
vertex-request generated in the initialize func-
tion. The type is read-only, because Kineograph does not
allow update functions to directly modify other vertices.
These vertices only contain the data fields that were spec-
ified in the initialize function.

We have implemented three applications on Kineograph.
We describe them in the rest of this section.

5.1 TunkRank: computing user influences
One of the most common applications for social network
analysis is to estimate the influence of certain users. For our
experiments, we use the TunkRank algorithm [31], which is
similar to PageRank [22]. In this model, influence of a user
X is defined as:

Influence(X) =
∑

Y ∈Followers(X)

1 + p ∗ Influence(Y)

|Following(Y)|
,

where p is a constant retweet probability.
In our experiments, instead of measuring the influence

based on “followers”, we use a stronger connection between
users based on who mentions who. In Twitter, if a tweet
contains “@username”, it means that the submitter of the
micro-blog mentions user username (i.e., pays attention to
username). According to [27], the resulting attention-graph
is a more reliable metric of the actual influence than the
follower-graph.

To compute the TunkRank, we use the push model as
follows:

ProcessTweet(tweet) {

foreach(word in tweet.text) {

if (word starts "@") {

mentionedUser = word[1:]

EmitOperations(createEdge,

from: tweet.user, to: mentionedUser)

}

}

}

Figure 4. Pseudo-code of the function for each ingest node
that is used to create the attention graph.

UpdateTunkRank(v) {

val newRankToPush =

(1+p*v["tunkrank"]) /v.numOutEdges()

foreach(e in vertex.outEdges()) {

val prevSent = v.("tunkrank", e.target)

val delta = newRankToPush - prevSent

if (|delta| > threshold)

v.pushDeltaTo("tunkrank", e.target,

delta)

}

}

Figure 5. Pseudo-code for the update-function for
TunkRank algorithm.

• graph: a graph of user-vertices with edges connecting
users who have mentioned each other. Figure 4 shows
the function that ingest nodes use to construct the graph.
Each EmitOperations emits two createEdge opera-
tions: one for the source to add an outgoing edge and the
other for the destination to add an incoming edge.

• initialize: for new out-edges, mark the vertex.
• updateFunction(vertex): sends the difference of the

new and the previous weighted TunkRank to its neigh-
bors. Its pseudo-code is shown in Figure 5.

• accumulator: sum-operation.
• trigger(oldval,newval): abs(oldval-newval)>ϵ.

By adjusting the ϵ in the trigger, we can adjust the
accuracy/computation time trade-off. In addition, we use
an global aggregator object to maintain a list of K most
influential users. In the experiment, we set ϵ to 0.001, a value
sufficient to find top influential users.

5.2 SP: approximating shortest paths
Computing shortest paths between two vertices in a graph
is a classic problem that is interesting in the context of
social-network graphs and so on. We implement a landmark-
based algorithm introduced by [28]. The algorithm uses a



set S of vertices as landmarks (seeds). For each vertex, we
maintain the shortest-path information from and to S. The
shortest path between two arbitrary vertices v1 and v2 can
then be approximated by the concatenation of shortest paths
between v1 to s and between s and v2 for some s ∈ S. It
has been shown that this approximation is satisfactory with
a reasonable set of landmarks. In our experiment, we use
the results of TunkRank and selects the top-ranked users as
landmarks.

To maintain the shortest-path information from v to a
landmark s, we use a relaxation-based algorithm derived
from Bellman Ford algorithm [8]. The algorithm involves
iteratively performing the following operations until no
changes occur: for any vertex v, for each of its inNeighbor
u, check whether u can get a shorter path toward s with v as
its first step (i.e., checking whether dist(v) + 1 < dist(u)).
If so, reset the distance of u as the smaller value and then
schedule a same procedure from u later. We implement this
algorithm in the push model.

• graph: same mention-graph as in TunkRank.
• initialize: for new in-edges, mark the vertex.
• updateFunction(vertex): sends its own length of

shortest path plus one as candidates to its in-neighbors.
• accumulator: minimize-operation.
• trigger(oldval,newval):
oldval.length > newval.length.

5.3 K-exposure: detecting controversial topics
Our third algorithm was recently proposed in [27] as a way
of identifying hashtags (“#tag”) that are controversial. [27]
discovered in particular that political hashtags of controver-
sial subjects had a clearly different spreading pattern than
light topics such as celebrity-related hashtags. To study these
patterns, an exposure histogram is computed for each hash-
tag. Exposure is computed as follows: let S be a micro-blog
post by user U that contains hashtag H at time t. Then k(S)
is defined as follows:

k(S) = |{neighbors of U}∩
{ users who posted a message with H at time < t}|.

Note that t is defined by the timestamp information at-
tached to every tweet.

By computing k(·) for posts that contain H , we can
compute the k-exposure histogram for each hashtag. Our
implementation of this algorithm uses the pull model, is
incremental, and does not propagate.

• graph: for each unique hashtag and user we create a
vertex and assign an edge from the hashtag to the user.
In addition, we utilize the same mention-graph created
for TunkRank.

• initialize: for each out-edge added to a hashtag,
schedule the update function and request all edges of
the corresponding user (target vertex of the edge).

• updateFunction(hashtagVertex, [userVertex]):
compute the intersection of the out-edges of userVertex
and hashtagVertex and update the k-exposure value of
hashtagVertex.

6. Fault Tolerance, Incremental Expansion,
and Decaying

As a distributed system, Kineograph must tolerate failures
and allow incremental expansion to cope with increasing
update rates and computation needs. Unique to Kineograph,
because of the time-sensitive nature of the applications it
targets, Kineograph should ideally support decaying, so that
newer information has a higher weight in the results we
produce. The design of Kineograph makes it easy to support
fault tolerance, incremental expansion, and decaying, as we
describe in detail here.

6.1 Fault tolerance
Kineograph has servers taking different roles in the sys-
tem; each of them needs to be designed to cope with fail-
ures. A Paxos-based [15] solution (e.g., Chubby [4] or
ZooKeeper [12]) can be used to implement Kineograph’s
centralized functionalities, such as maintaining the global
progress table, coordinating graph-mining computation,
monitoring machines, and tracking replicas. As the mech-
anism is well-explained in existing literature under similar
settings, we do not describe it in detail here. Our current
implementation uses a single server.

Ingest nodes. Because ingest nodes in Kineograph are
more than just stateless front-ends, care must be taken in
handling their failures. Kineograph’s epoch commit pro-
tocol assumes that each ingest node produces monotoni-
cally increasing sequence numbers for transactions of graph-
structure updates. This property must be preserved despite
machine failures. Note that it is possible for an ingest node
to fail in the middle of sending updates to multiple graph
nodes.

Kineograph introduces incarnation numbers and lever-
ages the global progress table to address this problem. Each
ingest node has an incarnation number. We replace sequence
numbers with pairs ⟨c, s⟩, where c is an incarnation num-
ber and s is a sequence number. They are used in graph-
structure updates sent to graph nodes and recorded in the
global progress table. When an ingest node fails and recov-
ers, or when a new machine takes the role of a failed in-
gest node, that resurrected ingest node i consults the global
progress table for the pair ⟨ci, si⟩ associated with ingest node
i. It seals ci at si and uses ci + 1 as the new incarnation
number. It can reset the sequence number to 0 or continue at
si + 1.



By sealing ci at si, all requests with ⟨ci, s⟩ where s > si
are considered invalid and discarded. To avoid any loss of
transactions, all incoming data feeds must be stored reliably
and can only be garbage collected after they have been re-
flected in the progress table. Here, we are taking advantage
of epoch commit to “undo” operations for free.

Replication at the storage layer. The separation of graph
updates and graph computation is crucial in simplifying fault
tolerance in Kineograph, as Kineograph uses two different
mechanisms to handle failures at the storage layer and at the
computation layer.

At the storage layer, graph-update operations and the re-
sulting graph data need to be stored reliably on graph nodes.
We leverage ingest nodes and use a simple quorum-based
replication mechanism: each logical partition is replicated
on k (say 3) different machines and can tolerate f (say 1)
failure, where k ≥ 2f + 1 holds. Graph-update operations
are then sent to all replicas and an ingest node considers the
operation reliably stored as long as f + 1 replicas have re-
sponded.

Some replicas might miss some operations for its logical
partition. An ingest node keeps a counter for the number of
operations for each logical partition and attaches the counter
with each operation. A replica can use the counter to identify
holes and ask the missing information from other replicas.
(Note that some transactions might not touch certain logi-
cal partitions. Therefore, we cannot use sequence numbers
to identify missing operations.) All replicas will create the
same snapshots as they apply the same set of operations in
the same order. We rely on the fact that graph update opera-
tions are deterministic.

A replica G loses all the in-memory data in case of ma-
chine failures. Kineograph will replace G with a new node
G′. In order to retrieve the lost data and catch up with the
other replicas in the same replica group R, G′ first asks each
ingest node s to send all future operations hosted on R to
G′ starting from sequence number ti (1 ≤ i ≤ n). Once G′

learns from the snapshooter that a snapshot P with a vector
clock ⟨s1, s2, . . . , sn⟩ satisfying si ≥ ti for each 1 ≤ i ≤ n
is created, G′ retrieves snapshot P from other replicas in R
and hence has all the information needed to take over G.
During the recovery process, other replicas in R continue to
serve graph updates and produce snapshots, hence the ser-
vice will not be interrupted.

Replication at the computation layer. Kineograph trig-
gers incremental graph-mining computation on consistent
snapshots. Each invocation of computation takes a relatively
small amount of time (up to the order of minutes in our ex-
periments). Because snapshots are reliably stored with repli-
cation at the storage layer, Kineograph simply rolls back
and re-executes if it encounters any failures in a computa-
tion phase. The result of a computation can be replicated to
tolerate failures. We do not perform replicated graph-mining
computation on replicas since certain graph computation is

non-deterministic. Instead, we use a simple primary/backup
replication scheme, where the primary does the computation
and copies the results to the secondaries.

6.2 Incremental expansion
The scale of Kineograph depends on many factors, including
the rate of incoming data feeds, the size of the resulting
graphs, and the complexity of graph-mining computation.
There are cases where Kineograph needs to recruit more
machines into the system in order to handle higher load,
larger amount of data, and/or heavier computation. In our
experiments, we have seen continuously increasing memory
footprint as the system takes in more and more data, partly
because we have not implemented any decaying mechanism.
It would be ideal to be able to spread the graphs onto a larger
set of machines when needed.

In our design, we create a large number of logical parti-
tions up front. Incremental expansion can then be achieved
by moving certain logical partitions to new machines, rather
than splitting logical partitions, although technically split-
ting logical partitions can easily be achieved as well.

Live migration of a partition can be challenging in gen-
eral, but is made much easier thanks to our snapshot mech-
anism. For simplicity, we ignore replication in the descrip-
tion, as adding replication into the protocol is straightfor-
ward. The overall procedure is similar to the failure recov-
ery mechanism at the Kineograph storage layer. Suppose Ki-
neograph wants to migrate a logical partition from S to T . It
communicates with each ingest node s about the migration
and a promise to send all future operations on that logical
partition to both S and T starting from sequence number ti.
Once a snapshot with a logical clock ⟨s1, s2, . . . , sn⟩ satis-
fying si ≥ ti for each 1 ≤ i ≤ n is created, Kineograph
instructs a copy of that snapshot from S to T . Once T re-
ceives the snapshot, it has all the information needed to take
over the logical partition from S. Because computation over-
laps with incoming updates, T can usually catch up with S
quickly without causing any performance degradation. We
have not implemented incremental expansion at the time of
this writing.

6.3 Decaying
In our experiments, we have seen a continuous increase in
the graph size as Kineograph contunuously takes in more
data. In practice, the value of information decays over time
and outdated information should gradually have decreasing
impact on results. Although we have not implemented this
mechanism, we outline here how Kineograph could support
decaying by leveraging global logical clocks based on se-
quence numbers.

Suppose we care only about the information in the last
n days and that the information within those n days has a
different weight depending on which day it is. Kineograph
can essentially create n + 1 parallel graphs to track the last
n days and plus the current day. The window slides as a day



Kineograph LoC Applications LoC
Storage 6180 TunkRank 310
Computation 6714 K-Exposure 137
RpcLib 1177 SP 487
Log 2123 GraphUpdate 527
Total: 17655

Table 1. Line of code count breakdown.
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Figure 6. In-edge degree distribution across vertices.

passes. Instead of using real time, which could lead to incon-
sistencies in a graph due to different interpretations of real
time on different servers, Kineograph align those decaying
time boundaries with the epochs defined by logical clocks of
sequence numbers. When a day passes in the real time, Ki-
neograph can look at the current epoch number and use this
as the boundary. The real graph used for computation can be
constructed by taking a weighted average of those parallel
graphs.

7. Evaluation
We have implemented Kineograph using C# with more than
17,000 lines of code, excluding test code. Table 1 summa-
rizes the lines of code for different components in the Kineo-
graph system and its applications. Note that we have devel-
oped our own RPC library that allows optimized data mar-
shalling.

We evaluated Kineograph on a cluster with up to 51
machines, each connected with Gigabit Ethernet. 25 of the
machines contained an Intel Xeon X3360 CPU (quad-core,
2.83GHz) and 8GB memory. The remaining had an Intel
Xeon X5550 CPU (quad-core, 2.67GHz) and 12GB mem-
ory. All the machines ran the 64-bit version of Windows
Server 2008R2 with .NET framework 4.0.

In our experiments, we simulated a live Twitter stream
by feeding our system from a bank of 100 million archived
tweets. This data set forms a graph of over 8 million vertices
(users and hashtags) and 29 million edges. Figure 6 shows
the edge distribution in the graph Kineograph constructs.
The distribution exhibits power law, where very few vertices
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have extremely high degrees (more than 200k). Figure 7
shows how the graph size changes when we feed the data
into the system with two ingest nodes.

To understand the end-to-end performance of the system,
we ran evaluations across the three applications described in
Section 5 on top of Kineograph.

Kineograph is designed to capture and mine a changing
data set (graph) in a timely manner. There are two key sys-
tem properties that are of interest to potential Kineograph
users. i) Update throughput: whether Kineograph is able to
support high update rates to the graph. ii) Data timeliness:
whether Kineograph can help applications compute timely
results out of the changing graph. We will report the experi-
mental results and our findings in the rest of this section.

7.1 Graph update throughput
Kineograph should be able to support high update through-
put that matches existing popular on-line services like Twit-
ter. As of October 2011, the peak amount of Twitter traffic
was 8.9K tweets per second [29]. Ideally, the system should
further take the future growth of the Twitter service into ac-
count.

In Kineograph, throughput is measured by counting the
number of tweets that have been processed after Kineograph
finishes constructing a snapshot for each epoch. As illus-
trated in Figure 8, snapshot construction is performed at a
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Figure 9. Graph-update throughput on 32 graph nodes
with varying numbers of ingest nodes and with different
applications. Snapshot interval is set to 10 seconds.

regular interval d. Snapshot Si−1 is constructed out of the
tweets accumulated before time ti−1. Snapshot Si is con-
structed with those tweets logged between time ti−1 and ti
(denoted as N [ti−1, ti]). Therefore, the average throughput
is calculated by N [ti−1, ti]/d.

To evaluate the peak graph-update throughput, we use a
preprocessor to parse the retrieved tweets and keep only the
information of interest to the applications (e.g., tweet text,
user name, and time stamp). The pre-processing reduces the
data-processing burden on an ingest node so that we can
generate more loads with a small number of ingest nodes to
the system for higher update throughput. By default, Kineo-
graph enables batch update (batch size set to 512) to improve
communication efficiency.

In our first experiment, we use different numbers of ingest
nodes to inject input streams at different rates and measure
the average graph-update throughput of Kineograph. All ex-
periments use 32 graph nodes with the snapshot interval set
to 10 seconds. The results are shown in Figure 9: the update
throughput increases with the number of ingest nodes. With
16 ingest nodes, the sustained average update throughput can
be more than 180k tweets per second, 20 times more than the
recorded Twitter traffic peak as of Oct. 2011 [29].

Figure 9 also shows that the update throughput varies un-
der different applications. This is because the update pro-
cedure competes for computation resources (e.g., CPU cy-
cles and network bandwidth) with applications running on
top of Kineograph. Since different applications consume dif-
ferent amounts of computation power, update throughputs
suffer from different levels of interference. For example,
SP and TunkRank require more computation power than K-
Exposure. Thus the update throughput under K-Exposure is
higher than those under the other two applications.

To understand further the benefit of the epoch commit
protocol for graph updates, we implement a simplified two-

Snapshot Interval(s) SCT Max/Avg Avg SCT(s) Throughput(t/s)
10 3.1 1.9 137.6k
30 2.2 4.4 143.0k
60 1.9 8.4 150.8k

Table 2. The impact of transient imbalance on through-
put under K-Exposure, with 8 ingest nodes, 32 graph
nodes. SCT Max/Avg: The ratio of maximum over av-
erage Snapshot Construction Time.

phase locking (2PL) scheme [30], where ingest nodes ob-
tain locks from graph nodes in a fixed-order (to avoid dead-
locks) and release locks when all locks are obtained. We
omit the actual execution of the operations and enable batch-
ing (with a batch size of 512) to improve throughput. Batch-
ing reduces the number of round-trips, but at the risk of in-
troducing more contention due to coarse granularity. Our
experiments do show better throughput at that batch size.
Figure 9 shows that the throughput of a 2PL-based scheme
does not increase with the number of ingest nodes. A closer
look reveals significant contention in the system, mostly due
to well-connected vertices in the graph. Due to the power-
law distribution shown in Figure 6, most concurrent updates
compete for the access to very few vertices, which results in
significant lock contention.

Figure 9 also shows that the update throughput increases
sub-linearly with the number of ingest nodes. Our inves-
tigation attributes this to transient load imbalance during
updates. In particular, we find that some graph nodes take
more time to construct a snapshot locally than others. Table 2
shows an example in which the graph node with the maxi-
mum snapshot construction time (SCT) can spend 3 times as
much as the average time of snapshot construction (denoted
as SCT Max/Avg ratio).

We further observe that the imbalance is transient. Smaller
snapshot windows, translates to more severe imbalances, and
correspondingly, lower aggregated throughput. For example,
if we increase the snapshot interval from 10 to 60, the SCT
Max/Avg ratio decreases from 3.0 to 1.9. Consequently, the
total update throughput increases by 10%. (Note that larger
interval also makes batching more effective.) A larger snap-
shot interval improves throughput, at the expense of timeli-
ness.

In summary, Kineograph can support the current peak
throughput and leaves plenty of capacity for future growth
of online services.

7.2 Data timeliness
The next set of experiments focus on data timeliness. As
shown in Figure 8, the computation for snapshot Si com-
pletes at time t′′i . The computation result Ci reflects the input
data between ti−1 and ti. We define timeliness for the input
window [ti−1, ti] to be between t′′i − ti and t′′i − ti−1.

As shown in Figure 8, data timeliness depends on snap-
shot interval d, snapshot construction time (SCT) for snap-
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Figure 10. Data timeliness for different applications with
2 ingest nodes and 32 graph nodes.

shot Si, and computation time for the corresponding result
Ci. Since computation complexity of different applications
varies, the actual data timeliness differs on different applica-
tions, even when Kineograph has stable system behavior.

Figure 10 shows data timeliness of different applications
and confirms the impact of application complexity. Com-
pared to K-Exposure, the TunkRank and SP algorithms are
more complex, require multiple rounds, and suffers from
worse data timeliness.

Figure 10 also shows that data timeliness becomes worse
over time. A closer look shows that this property is mainly
due to increases of the graph size over time, as shown in
Figure 7. We did not use decaying in our experiments.

The overall data timeliness is within minutes. In the case
of TunkRank, Figures 9 and 14 show that Kineograph is
able to provide data timeliness of less than 3 minutes, with
the update throughput more than 100k tweets per second,
more than 10 times the peak throughput of Twitter (as of
Oct. 2011). Two factors contribute to such good timeliness
results: support of incremental graph computation and the
use of a distributed system. We evaluate the effect of these
two factors in our subsequent experiments.

Figure 11 shows the benefit of incremental TunkRank
computation over the non-incremental version. Because the
incremental version reuses the previous results as the starting
points, we actually see that the benefit grows over time.
As the graph size grows, the non-incremental version has
to compute TunkRank from scratch at an increasing cost.
Figure 12 shows similar benefits of incremental computation
for all three applications.

Figure 13 demonstrates the scalability of TunkRank run-
ning on Kineograph. With more graph nodes involved in the
computation, the data timeliness becomes better, an indica-
tion of reduced computation time. This data shows that Ki-
neograph scales well with the increase of graph nodes, for
this particular application. The 32-node case has 84% better
timeliness than the 8-node case. Note that the 32-node case
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has more than 4 times speedup over the 8-node case, mainly
due to the extra memory management cost (e.g., garbage col-
lection) in the 8-node case.

Another factor that affects timeliness is the incoming data
rate on the system. Figure 14 shows that with added in-
gest nodes and increased incoming data rate, the data time-
liness becomes worse. The results arise from three factors.
First, for the given input stream at the same time instance,
the graph size becomes larger at a higher rate; computation
over a larger graph is expected to take more time. Second,
at a higher rate, the change of the graph between two snap-
shots becomes larger. Consequently, it takes more time to
finish the computation, even with incremental computation.
Finally, a higher incoming rate leads to higher throughput
and more resource consumption, taking resources away from
computation and causing it to slow down.
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7.3 Fault tolerance
We demonstrate the system behavior under machine failure
using 2 ingest nodes and 48 graph nodes, running TunkRank.
The graph nodes host 16 graph partitions in total, i.e., every
partition has three replicas. To fully utilize computation re-
sources, for every graph partition, each of the three replicas
is responsible for the computation of 1/3 of the graph parti-
tion.

Figure 15 shows how the system performance changes
over time when we kill one graph node during the experi-
ment. At the time around 324 seconds (t0) after the experi-
ment begins (after the construction of snapshot 31), we ter-
minate one graph node. The system detects the failure and
initiates the failure recovery process for the graph node as
described in Section 6.1.

As shown in Figure 15, since the storage layer of Kineo-
graph uses a quorum-based replication scheme, the graph
update throughput does not suffer from the machine failure.
The computation layer, however, is more vulnerable to fail-
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date throughput (1k tweet/s) with 2 ingest nodes and 48
graph nodes under 1 graph node failure.

ures since Kineograph does not replicate computation. The
TunkRank computation stops right after the failure occurs.
Therefore we observe no timeliness data during the fail-
ure time (between t0 and t1). The computation restarts af-
ter the resurrected graph node catches up with other repli-
cas at snapshot 35 (around 360 seconds). As expected, the
data timeliness right after the recovery increases greatly be-
cause the graph data has been accumulated over 30 seconds
and the benefit of incremental computation decreases due
to larger graph changes. Actually, Kineograph produces the
first computation result at t1, more than 40 seconds after
the completion of the failure recovery procedure. The data
timeliness becomes normal after several rounds of computa-
tion since the TunkRank incremental computation gradually
catches up with the changes in the graph.

In summary, the failure behavior of Kineograph matches
our design goal well.

8. Related Work
Kineograph builds on a large body of existing literature
in distributed systems and database systems. We focus on
three most related areas: distributed in-memory storage
(key/value) systems, incremental data processing, and graph
computation.

Distributed in-memory storage systems. Distributed in-
memory key/value stores have received a lot of atten-
tion, both in the research community and in the indus-
try [13, 19, 21]. Kineograph leverages this technology, adds
basic graph support, and more importantly supports snap-
shots.

Incremental data processing. Recently, many research
efforts have focused on improving computation efficiency
through augmenting existing scalable batch-processing en-
gines with incremental computation capability. Systems like



Incoop [2], Haloop [3], DryadInc [25], Yahoo continuous
bulk processing (CBP) [16], Comet [11], and Nectar [10]
achieve this by allowing their applications to reuse existing
computation results. However, those systems are not de-
signed for scenarios with fast continuous data updates and
timely computation results. Most of the work focuses on
variations of relational or MapReduce models, rather than a
graph model.

Google Percolator [24] provides a trigger-based event-
driven programming model for incremental web index con-
struction. It provides a lock-based mechanism to support up-
date transactions with snapshot isolation. Their design tar-
gets the scenarios where the conflict rate of transactions is
low. This is unfortunately not the case in highly-connected
graph structures. Instead of using locking, Kineograph uses
epoch commit to construct consistent snapshots.

There are also extensive works in the database commu-
nity on incremental computation [5–7]. Stream processing
databases continuously accept new incoming updates, incre-
mentally maintain database view, and adopt window-based
relational operators to process the incoming data and gener-
ate results in real-time. Kineograph differentiates itself from
them on the following aspects. First, rather than incremen-
tal computation only on a window of incoming updates, Ki-
neograph supports computation on a new global snapshot
and needs to merge efficiently new updates with the existing
snapshot to construct a new one. Secondly, Kineograph tar-
gets graph computations, which might not be well supported
in a relational data model [1, 20].

Graph computation. In recent years there has been a lot of
interest in the research and industry towards graph compu-
tation, which has been driven by the rapid growth of graph
data, such as social networks and the web. In addition, the
scientific computation community has been studying planar
and grid-graphs for decades. Recent influential works on
vertex-based computation include Google’s Pregel [18] and
GraphLab [17]. Pearce et al [23] propose an asynchronous
graph computation model for multi-core that is based on
an extended version of the graph visitor pattern. To pro-
cess graphs that do not fit in memory, [23] employs effi-
cient mechanisms to store part of the graph in flash-memory,
while we provide a distributed computation model. Pegasus
[14] is a collection of highly scalable batch graph-mining
algorithms written for Hadoop. Unlike the existing offline
graph engines that perform graph computation on static
graph structures, Kineograph extends them with snapshot-
awareness on a fast and continuously changing graph struc-
ture, and provides the ability to perform incremental graph-
mining to produce timely computation results.

9. Concluding Remarks
Kineograph reflects our belief that there is a potential
paradigm shift in distributed-system research. It departs
from the now “traditional” areas of high-throughput and

scalable batch systems, as represented by systems such as
GFS and MapReduce. The new paradigm is inspired by in-
creasingly popular social networking, micro-blogging, and
mobile Internet applications. These services are more cen-
tered around graph-based storage and computation, while
striking a different and delicate balance among timeliness,
consistency, and throughput. While this paper focuses on an
overall architectural design with novel constructs, we expect
to see new abstractions and building blocks emerging in the
near future.
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