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Abstract
Web applications are a frequent target of successful attacks.
In most web frameworks, the damage is amplified by the fact
that application code is responsible for security enforcement.
In this paper, we design and evaluate Radiatus, a shared-
nothing web framework where application-specific compu-
tation and storage on the server is contained within a sand-
box with the privileges of the end-user. By strongly isolat-
ing users, user data and service availability can be protected
from application vulnerabilities.

To make Radiatus practical at the scale of modern web
applications, we introduce a distributed capabilities sys-
tem to allow fine-grained secure resource sharing across the
many distributed services that compose an application. We
analyze the strengths and weaknesses of a shared-nothing
web architecture, which protects applications from a large
class of vulnerabilities, but adds an overhead of 60.7% per
server and requires an additional 31MB of memory per ac-
tive user. We demonstrate that the system can scale to 20K
operations per second on a 500-node AWS cluster.

Categories and Subject Descriptors D.4.6 [Security and
Protection]: Access Controls

Keywords web application, security, isolation
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1. Introduction
Web sites are routinely broken into, resulting in frequent
service disruptions and massive leakage of private informa-
tion. With the current architecture of most web services,
wide-scale compromise is all too easy because the server-
side application logic is part of the trusted computing base
(TCB). Existing web applications are structured as mono-
lithic controllers with access to all user data, interpreting
user permissions in order to dynamically assemble pages
for a user. Thus, compromises allow attackers nearly unim-
peded access to all of the information available to the ser-
vice. Data compromises of this nature have remained the
largest class of web application vulnerabilities for the full
decade of OWASP (Open Web Application Security Project)
vulnerability reports[17].

A natural approach to securing web applications is to de-
privilege the code into sandboxed processes for individual
services (e.g. search and newsfeed) [31, 54] or for individ-
ual users [55, 62]. Even if the code execution environment is
isolated, previous attempts continue to assume a global data
model to maximize compatibility with existing web frame-
works. Applications are written assuming full access to a
single shared database across all users, requiring that the de-
veloper iteratively restrict global data policies [32, 62, 69]
to fit the application, potentially using information flow con-
trol [46, 61].

In this paper, we investigate an alternative data security
model in an end-to-end shared-nothing web architecture.
The web platform already treats the browser as a per-user
isolated sandbox running untrusted code. We extend this into
the server and database, where application code is run in
a strongly isolated sandbox containing its own logical data
partition with the privileges of the logged-in user. By de-
fault, no state is shared between users. Developers write
their applications in terms of mutually distrusting users, who
can only communicate through messages. For aggregate an-
alytics across users, developers use standard differential pri-
vacy techniques [42, 57] to remove the need to store large
amounts of raw data. Radiatus’s distributed runtime uses
a capability-based security system to protect access to pri-
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(c) Layout of a Radiatus web service.

Figure 1: Current web applications provide little isolation within the context of the application runtime, leading to a large attack surface.
Application logic across all machines are treated as part of the trusted computing base with access to global state. Previous attempts to
sandbox services or user application logic still depend on specifying a correct global data security policy to protect a global database. In
Radiatus, we extend isolation into the storage layer in an end-to-end shared-nothing architecture. Both application logic and storage for each
user runs in sandboxes with de-escalated privileges, which communicate through a restricted message passing interface.

vate data, while being both storage space-efficient and hor-
izontally scalable. Capability-based security can be a more
tractable approach for the data sharing patterns of web ap-
plications across internal services compared to group-based
data policies. Barring compromise of the user authentication
mechanism, intrusions are contained to the subset of data al-
ready available to the malicious user.

Sandboxing users of a modern web application with rea-
sonable performance is challenging. Generating a single
page can span many layers of web servers, caches, storage
systems, and coordinators, across multiple machines and
data centers. A user container must isolate users at every
layer of the stack, while supporting cross-user data sharing
and application flexibility. Our goal with Radiatus is to show
that we can implement a shared-nothing web architecture in
a way that is practical today with scale, cost, and perfor-
mance within a factor of existing shared-everything web
frameworks. The changes to the server are completely trans-
parent to the user, who continues to access the site through
an unmodified web browser. Similarly, developer should be
able to continue using existing programming languages, dis-
tributed databases, distributed caches, content delivery net-
works, and infrastructure-as-a-service cloud providers.

In order to evaluate the strengths, weaknesses, and per-
formance implications of our architecture, we have imple-
mented a Node.js-based web framework in 8764 lines of
code, called Radiatus, and three applications: an academic
social network, a file sharing tool, and a messaging ser-
vice. The difficulty of porting applications can vary depend-
ing on the application workload. For example, we found it
much easier to port applications that were written to be self-
deployed or federated. We describe our experiences porting

Arc Forum, the engine behind Hacker News, to run on our
system.

While our framework can contain the damage caused by
many external intrusions and exploits, we do not protect
against insider threats with administrative access to site in-
frastructure. The framework also does not attempt to protect
individual users from targeted attacks. Radiatus is comple-
mentary to other web security-related work, including en-
cryption [45, 65, 66], language-based security [36, 38, 56],
and bug-finding [30, 43, 68, 71, 78].

The rest of the paper elaborates on our contributions:
• We describe the Radiatus shared-nothing architecture for

strongly isolating users in web applications and describe
how existing web applications can be written in this model
(§ 3).

• We have built the Radiatus platform and illustrate the Ra-
diatus API with three applications written in the frame-
work (§ 4).

• We show that sandboxing users prevents large-scale ex-
ploitation of the most severe web-related vulnerabilities
of 2014. We quantify the performance impact of Radiatus,
including using it on a 500-node deployment on Amazon
AWS (§ 5).

2. Background
There are many ways that web applications can be con-
structed. This section attempts to characterize standard de-
sign patterns found across languages and frameworks, and
then discuss why they are susceptible to attack.

2.1 The Current Web Application Model
Figure 1a illustrates the architecture of a typical medium-
sized web application. When users navigate to the site, DNS
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1 if (isset($_COOKIE[’ari_auth’])) {
2 $buf = unserialize(stripslashes($_COOKIE[’ari_auth’]));
3 list($data,$chksum) = $buf;
4 }

Figure 2: FreePBX (v≤2.9.0.9), a VoIP server, improperly sani-
tizes the ari auth cookie before calling unserialize in ht-
docs ari/includes/login.php. Because unserialize can import
arbitrary PHP objects, this vulnerability can be exploited to exe-
cute arbitrary code (Sept. 2014).

routes the request to a nearby data center. A load balancer
then distributes incoming requests across web servers run-
ning identical copies of the application. Because servers are
stateless, physical resources can be dynamically scaled up or
down to meet demand.

The HTTP interface intermingles authentication, user ac-
tions, and content fetches. The developer must properly han-
dle requests, administer access control and prevent leakage
of information. Developer speed is a critical issue, but expe-
diency comes at the cost of an increased number and sever-
ity of bugs. For example, in the case of a social network, one
may store a list of users and their permissions in a relational
database. When a user requests a feed of recent content, the
web server assembles the page by querying the database for
recent content, filtering the content with access control poli-
cies in another table, and populating a web page template.

Large services may break functionality into multiple in-
ternal services in a service-oriented architecture (SOA). For
example, site search may be written and maintained by a dif-
ferent product group from the shopping cart. In this case,
each individual service is typically written in the same model
as above, with a front end web service that integrates multi-
ple internal services on behalf of a user.

Because code is executed on behalf of the service, rather
than as the user, remote code execution vulnerabilities are
particularly devastating. For example, Figure 2 shows a
subtle code injection vulnerability in FreePBX, an open
source VoIP server, as exploited on Sept. 2014 [60]. An
improperly sanitized HTTP cookie, ari auth, passed into
unserialize() allows an attacker to import arbitrary
PHP objects into the context. Code injection vulnerabilities
have led to countless data leaks and service disruptions in
web applications [15, 22, 25, 39, 76]. For example, attackers
in 2014 were able to write files and execute arbitrary code
on Flickr servers by exploiting an injection vulnerability in
a new photo books feature [76].

2.2 Global Data Security Policies
Existing databases allow developers to specify access con-
trol policies, typically at the granularity of a database table
or collection. Prior work expands on this primitive to provide
the ability to write fine-grained access predicates [8, 62] and
information flow control policies [46, 61]. Other frameworks
bind policies to the data [32, 69] which follows the data as it
propagates through the system. Data policies can be explic-

CWE Description Percent
CWE-20 Improper Input Validation 6.7%
CWE-22 Path Traversal 6.8%
CWE-79 Cross-site Scripting∗ 25.9%
CWE-89 SQL Injection 22.0%
CWE-94 Code Injection 6.8%
CWE-119 Buffer Overflow 6.9%
CWE-189 Numeric Errors 1.7%
CWE-200 Information Exposure 3.9%
CWE-264 Improper Access Controls 7.6%
CWE-287 Improper Authentication 2.4%
CWE-352 Cross-Site Request Forgery* 2.2%
CWE-399 Resource Management Errors 3.5%

Other (Server-Side) 3.6%

Figure 3: Most common vulnerabilities related to web technology
as reported by the National Vulnerability Database [15]. Each is la-
beled using the standard Common Weakness Enumeration (CWE).
∗Client-side attacks that coerce browsers into performing unautho-
rized actions; the others involve server compromise.

itly defined by the developer, or inferred through monitoring
real access patterns at runtime [31].

The development pattern for these systems typically start
with global access to the database, as the developer itera-
tively restricts access to define a proper security policy. Pre-
vious attempts at per-user sandboxes for code execution also
use this data model to optimize for compatibility with exist-
ing applications [62]. In this paper, we investigate the prac-
ticality of a shared-nothing architecture, where user parti-
tions are empty to start and require message passing to share
data between users. Our goal is not to advocate for a shared-
nothing architecture, but to analyze the cost and experience,
showing that a system based on message passing can be
practical for certain applications that need the potential se-
curity benefits.

2.3 Threat Model
We focus on preventing attacks aimed at compromising a
web server from an external vantage point. We assume a
malicious user can craft arbitrary network packets and send
arbitrary requests to the server. This includes URL interpre-
tation attacks, server-side includes, code injection attacks,
SQL injection, malicious file executions, and buffer over-
flows. The Web Hacking Incident database [22] reports that
attacks of this nature have led to information leakage, ser-
vice disruption, defacement, and malware distribution.

We catalog the 31,380 vulnerabilities in the National Vul-
nerability Database [15] that are related to web technologies
or the systems that power them, such as SQL databases. Each
vulnerability comes categorized with a Common Weak-
ness Enumeration (CWE) [4] label. The methodology likely
under-reports the frequency of server-side problems; for
most web applications, the server-side code is not public,
limiting the ability for outside groups to diagnose precisely
why compromises occur.

In this data set, 28.1% are client-side attacks that coerce
a web browser client into performing unauthorized actions,
such as cross-site scripting and cross-site request forgery.
Radiatus is not aimed at these vulnerabilities, but our im-
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plementation uses industry standard content security poli-
cies [3] and CSRF tokens [17] to mitigate such attacks.

Most vulnerabilities, 69.2% in this data set, involve flaws
in server-side logic. Our goal is to address this broad range
of attacks against server code, so that application code can
be developed quickly without introducing subtle security
vulnerabilities. We should note that prior work has shown
progress at preventing specific server-side attacks, such as
SQL injection.

We do not address server misconfiguration, insider at-
tacks, social engineering, or weak cryptographic primitives.
Each of these are better addressed by other, complementary
techniques [34, 37, 41, 45, 46, 65].

3. Radiatus Design
While introducing per-user isolation seems like an intu-
itively simple idea, a number of challenges make it uniquely
difficult for web applications. Previous work [31, 54, 55]
has proposed process isolation in a single web server, but
none have explored the practical demands of per-user isola-
tion in the context of a modern scalable web service using
a variety of distributed storage systems, caches, and content
distribution networks.

For example, how do you support per-user database se-
curity? Different storage backends have different user mod-
els, a problem sidestepped when application code is trusted.
How do you manage memory consumption and storage
costs? We can give each user their own cache and storage
silo, but many objects in modern web applications are shared
across users, sometimes across millions of users. How do
you efficiently support one-to-many communication pat-
terns? Copying data between users may not be feasible, and
certainly adds overhead. How do you perform distributed
container management? User containers need to be placed
to minimize communication cost and maximize load balanc-
ing.

3.1 Goals
In this section, we describe the user container model and the
techniques that we use to make per-user isolation practical.
• Strong Isolation: Radiatus should provide a general

framework for isolating users, such that server-side ap-
plication vulnerabilities do not compromise data integrity
or service availability for other users.

• Minimal Overhead: We should support each additional
user with minimal overhead in performance and cost com-
pared to existing web frameworks.

• Scalable: The scale and performance of applications writ-
ten and deployed on Radiatus should be comparable to
that of existing web frameworks.

• Interoperability: The system should interoperate with
existing cloud infrastructure, storage systems, and tools.

3.2 Approach
Figure 1c shows the high-level model of a Radiatus appli-
cation. We move developer’s code into a protection domain
that runs on behalf of the user. Attackers that exploit a vul-
nerability in that code are limited to the containers they have
credentials to access.

Sandbox Users: In Radiatus, we spawn a sandboxed pro-
cess, which we call a user container, for each active user.
All code written by the developer runs inside this protection
domain with the privileges of the given user. As such, the
user container can only read and modify data that is owned
by the user. In practice, we use Linux containers, which pro-
vides memory, filesystem, and fault isolation between con-
tainers. We leverage existing techniques to apply resource
limits to user processes.

Limited Interfaces: Existing web services expose a single
large HTTP interface for authentication, user actions, and
content fetches. Radiatus splits this interface into three with
access restricted by least privilege. Any user can authenti-
cate with the user authenticator. Once equipped with an au-
thorization token, the user router forwards a user’s request
to their own de-privileged containers; requests are never di-
rectly processed by privileged code. We expose a cross-
container message interface between user containers to fa-
cilitate data sharing. User containers can only communicate
with mutual consent and access to this interface is blocked
by default.

Passive Containers: To minimize memory overhead, con-
tainers are offline by default. Applications are written using
an event-based programming model. A distributed container
manager determines placement, suspends, and resumes user
containers as necessary to process incoming requests.

Distributed Capabilities: Logically, each user has a stor-
age partition, but physically the underlying data is shared
and stored on commodity databases. A storage guard, in-
termediates access to the database and enforces access con-
trol for user data. We provide capabilities for scalable fine-
grained access control across disparate database systems,
while deduplicating common data between users.

Minimize trusted computing base: When processing re-
quests from the browser or between containers, we expect
developers to employ defensive programming, treating com-
municating parties as untrusted entities. In addition to these
message checks, our trusted computing base consists of a
user authenticator, user router, storage guard, Radiatus run-
time, and container mechanism (e.g. OS processes/hypervi-
sor). These components are written once and shared across
all Radiatus web applications.

3.3 Example Application
In this section, we walk through the typical lifecycle of Ra-
diatus applications. A user container acts as the server-side
agent for each user, in a shared-nothing architecture. The
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Figure 4: Workflow of uploading and sharing files in the user
container model. Each user container acts in isolation and stores
data in a private location. Alice and Bob communicate using a
typed message passing interface, through which they share files and
messages.

container manages the user’s private data and capabilities
to access data that has been shared with that user. When
a user visits the site, the application code running in the
container retrieves the data necessary to assemble the de-
sired page. Because user containers run identical application
logic, our system maintains a pool of instantiated but uncon-
figured containers, which are lazily bound when users log
in and subsequently destroyed when they log out. This tech-
nique reduces the latency of the first request by a new user.

Figure 4 shows the workflow of sharing a file in a Ra-
diatus application. Consider the scenario where Alice shares
a file with Bob. When Alice logs in, a user container is as-
signed to her. Alice uploads the file to her user container
and the application uses the storage interface to store the file
and metadata. The storage request returns a capability giv-
ing Alice (and only Alice) the ability to retrieve the paper.
Using the cross-container communication interface, Alice’s
container can send the capability in a message to Bob’s con-
tainer. If Bob is currently offline, this message is stored in a
persistent queue until Bob logs in.

Capabilities are transferable and provide read-only access
to an immutable snapshot of data. If Alice makes changes to
the file, she would need to send another capability to Bob
for him to see the revision. As we will see later, the fact that
capabilities refer to immutable data is important for system
scalability and capability revocation.

3.4 Container Management and User Routing
A container manager keeps track of the web server on which
each user container is running. The container manager sus-
pends containers when they become inactive. When a user
container needs to be initiated, the manager chooses an ap-
propriate server. The container manager also attempts to

1 type: {
2 title: ‘string’,
3 author: ‘string’,
4 timestamp: ‘number’,
5 pdf: ‘buffer’
6 },
7 rate: 100,
8 priority: ‘wake’

Figure 5: Example of a declared message type. Developers must
specify the type, rate limit, and priority of all messages across the
cross-container message interface.

co-locate user containers that frequently communicate with
each other.

Like a traditional load balancer, the Radiatus user router
proxies connections to servers, optionally terminating the
TLS connection. The user router looks for a session cookie
in the HTTP request, uniquely identifying the user. If the
router instance has never seen the user before, it will query
the container manager for the host server of the user con-
tainer and caches this information. Subsequent requests from
this user are then forwarded to the proper user container.
Even if an application contains an exploitable vulnerability,
network requests from the attacker will only be routed to the
attacker’s container. User routers are horizontally scaled as
necessary to meet traffic demands.

3.5 Cross-Container Communications
In order to support offline users, messages between user
containers are persisted in a distributed message queue, like
Apache Kafka [1] and Amazon SQS [2], until the recipient’s
user container wakes up. Developers can also specify wake-
on message policies for high priority messages (e.g. ones
that impact the user interface).

By default, containers are disconnected. Developers use
addPeer/removePeer calls in the API to specify per-
mitted communication channels. Depending on the applica-
tion, developers may require bilateral consent before accept-
ing messages (e.g. friend requests), or they may allow one-
way consent (e.g. chat messages). Limiting the connected-
ness of the container graph makes it more difficult for the
attacker to crawl the site by slowing virus propagation.

We introduce two optimizations to relieve stress on our
message queue. First, messages between two user contain-
ers on the same machine are directly routed to each other,
bypassing the network. Second, we batch messages to dif-
ferent user containers on the same node to reduce overhead.

As with incoming handling web requests, developers are
expected to employ defensive programming when writing
message interfaces, treating communicating parties as un-
trusted entities. While it is possible for vulnerabilities to ex-
ist in this code (cf. CWE-20), Radiatus employs a defense-
in-depth strategy to mitigate the risk of widespread exploita-
tion. Attackers must first compromise a user container to
even have access to the cross-container interface. They must
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Key-Value Storage
Name Description
get(key) Get a key
set(key, value) Set a key/value
remove(key) Remove a key
enumerate() Return all keys
clear() Clear partition

Cross-Container Communication
Name Description
send(userId, msg, msgType) Send a message
registerHandler(handler) Handles incoming messages
addPeer(userId) Add a peer
removePeer(userId) Remove a peer

Figure 6: Radiatus APIs for interacting with storage and other
containers. The storage system exposes a logically isolated user
partition.

then find an exploit that provides control over the neighbor
container in a way that can be propagated.

Because containers run on server hardware, we can use
three additional techniques to limit attacks:

Typed interfaces: Developers must declare the messages
and protocol for cross-container communication [50]. The
system checks all messages at runtime, denying non-conforming
messages. Figure 5 shows an example of a declared message
type.

Resource limits: Each container is subject to strict limits on
resources (e.g. CPU, memory, network), to prevent attacks
from launching denial-of-service attacks.

Anomaly detection and eviction: While we have not yet
implemented this feature, we could use machine learning
to build a steady state model of expected container behav-
ior, because application communication patterns are hard-
coded into the application logic. Anomalous resource usage
or communication patterns can trigger an operator alert for
manual review. A dashboard gives the operator controls to
pause containers, partition the network and evict users as
necessary to preserve the health of the system. Many of the
techniques, such as real-time notifications, high-speed event
monitoring, and policy scripts, are borrowed from decades
of research in intrusion detection systems [63].

3.6 Storage Access
The storage guard layer provides access control to pro-
tect back-end storage systems. In our shared-nothing ar-
chitecture, each user reads and writes into their own log-
ical partition. A storage guard instance is co-located with
each database entry point, intercepts all requests, and tags
each record with the owner. Storage guard implementations
must be adapted to communicate with each type of database
(e.g. SQL, NoSQL). For example in our MongoDB deploy-
ment, an instance of the storage guard is run in front of
each mongos query router. As the MongoDB cluster grows,
there can be many storage guards and query routers indepen-

dently coordinating distributed operations over the database,
itself partitioned over many mongod database shards. We
assume the developer will use a heterogeneous set of diverse
databases. While we could have used the built-in access con-
trol provided by the database, synchronizing fine-grained ac-
cess control policies across databases could easily become a
bottleneck.

3.6.1 Distributed Capabilities
Radiatus uses distributed capabilities to encode access con-
trol in the existing communication patterns of the applica-
tion. For example, when Alice notifies Bob about a new
photo, Alice can directly pass the capability that gives Bob
access to the photo. The capability is a cryptographic hash
of the content plus a random nonce H(data,nonce), which
acts as a self-certifying name proving read-only access to
immutable data [44].

When a user stores a value, set(k,v), the user container
adds a random nonce, n to the value and computes the hash,
H(v,n). The container then sends a request to the storage
guard to persist the ownership metadata, (user,k)→H(v,n),
the capability, as well as the content, H(v,n)→ v.

Capabilities are then self-certifying and transferable.
Containers can send the capability, H(v,n), to other contain-
ers, which can use it to retrieve the data from the database.
The storage guard will only return content if the capability
has been registered by the owner. Radiatus also uses Mem-
cached to cache metadata, such as which keys a user owns,
to accelerate data fetches.

This mechanism helps satisfy our original goals of scal-
able isolation with minimal overhead, with these properties:
• Because the capability provides proof of access, any stor-

age guard can independently verify a capability, allowing
the database and application to scale independently.

• Regardless of the number of users that persist the same
content, or share the content with their friends, the database
only needs to store one copy of every unique data value,
deduplicated by content hash.

• Transferring capabilities is cheap, regardless of the con-
tent size or number of users with access.

• If a capability is granted to a malicious user, they cannot
destroy the owner’s data.
To support revocation, e.g., to remove an ill-advised

tweet, the owner’s container can delete both the capabil-
ity and the data value from the store. This invalidates any
outstanding capabilities to the data and prevents future re-
trieval. To revoke a capability from a specific user, e.g., on
a change to a friend list, the owner’s container picks a new
nonce m, computes the new capability H(v,m), installs it,
distributes the capability to the new set of friends, and then
deletes the old capability mapping. Of course, a corrupted
friend’s account could have already retrieved and stored a
copy of the data or leaked it to the tabloids. Revocation only
prevents later access.
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We have implemented storage guards for MongoDB and
Memcached, which have been sufficient for the applications
that we have built to date. Other NoSQL and key-value sys-
tems can be supported similarly. We next describe how ca-
pabilities would interact with other types of storage systems;
these are not part of our current implementation.
Object-Relational Mapping (ORM) Object-relational map-
ping (ORM) [27] is a common programming model that al-
lows developers to persist objects in relational databases.
For example, it is natural to write an object-oriented pro-
gram where an instance of an AddressBook class stores an
array of Record instances. ORM libraries provide synchro-
nization primitives to convert these objects into representa-
tions which are compatible with a relational database. ORM
is the default programming model for many popular web
frameworks including Django, Ruby on Rails, and PHP. In
this case, the Radiatus storage guard functions identically as
when in front of an SQL database, described next. Objects
are serialized and hashed before persisted to the database.
Relational Databases We want to give a user container ac-
cess for any table (or object-relational) data for which the
user holds the matching capability. To do this, we configure
every table in the database with two extra columns to store
the owner of the row and a hash of its contents (the capabil-
ity). On an INSERT operation, the storage guard automat-
ically populates the owner and capability columns. Subse-
quent requests to UPDATE a row are allowed if the user is
the owner; this also modifies the hash value, ensuring that
each capability is valid only for a particular data snapshot.

For queries, the user container sends the storage guard a
list of its capabilities; these lists can be cached for efficiency.
The results of simple SELECT queries can be post-processed
to ensure only rows that the user has permission to access are
returned, with the owner and hash value stripped off. More
complex queries involving JOIN need to be prepended with
a SELECT operation to check and strip off the capability.
Content Distribution Networks (CDN) Many modern
CDNs provide a programming interface for adding and re-
moving content from the network. As such, we can create
a storage guard that uses similar techniques. We treat the
CDN as a blob store, which stores a single copy of every
published piece of content. A NoSQL database is used to
store user ownership metadata. Capabilities can then be em-
bedded in a unique URL to be linked from HTML pages.

3.7 Internal Services
To simplify development and improve modularity, a num-
ber of web applications are designed with internal structure:
a stateless frontend web server that coordinates calls to a
mixture of backend application, caching, and storage ser-
vices. For example, an e-commerce site may operate differ-
ent internal web services for their shopping cart, user recom-
mendations, personalized search, notifications, and customer
support. As with frontend servers, these internal services of-
ten mix application logic with access control and privacy en-

forcement, raising the vulnerability of user data to compro-
mise.

With Radiatus, internal services can exist within contain-
ers, with user credentials transparently propagating from the
frontend to the backend services. User containers are not al-
ways appropriate or necessary. Some backend services are
general purpose, such as a distributed configuration or lock
manager. Others require access to site-wide data, such as
computing trending topics in Twitter. By sandboxing fron-
tend code, Radiatus provides defense in depth protection for
these internal services. More fundamentally, these services
need to be treated as part of the trusted computing base:
carefully designed with a narrow interface that is hardened
against attack.

In a few cases, internal services can be treated by the rest
of the system as an untrusted user. An example is a service to
aggregate content for a public newsfeed. For this, Radiatus
supports the notion of a service user for shared computation.
A service user encompasses a unit of aggregate computation
on behalf of the service. Service users are addressable like
normal users, but their containers run code on behalf of the
service. Since service users communicate with normal user
containers, the service developer must apply defensive pro-
gramming with the assumption that user containers can be
compromised, and vice versa. For example, one could ap-
ply differential privacy libraries for privacy-preserving data
collection.

4. Implementation
4.1 Radiatus Framework
We have implemented the Radiatus web framework as a col-
lection of various software components. A container run-
time hosts a number of user containers on a server, each iso-
lated in a unique sandbox. A user router routes incoming
requests to user containers. A storage guard mediates calls
to the storage systems by checking capabilities and translates
the request to the database-specific interface. Lastly, cross-
container messaging is supported by a message queuing sys-
tem and a distributed container manager.

We have implemented Radiatus as a web framework in
8764 lines of code on the Node.js runtime [14], where each
user is allocated a Docker container [5] running a separate
Node.js process. We inject stubs for each of the Radiatus
APIs and block any other interfaces normally provided by
Node.js. The Storage Guard interposes on user storage re-
quests to expose a partitioned NoSQL database, but inter-
nally uses MongoDB and memcached.

While our implementation uses Docker, the Radiatus de-
sign is compatible with other virtualization technologies.
Depending on the operating environment, performance, and
security requirements, developers can choose a virtualiza-
tion technique that works for them, from OS-level virtual-
ization [5, 13, 16, 21] to full virtual machines [12, 26]
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Application Blizi FileDrop Chat
Total LOC 2958 614 285

Server-side LOC 870 219 133
User Interface LOC 2088 395 152

Figure 7: Lines of code to implement each application.

Our message-passing system fits the growing use of
event-driven programming for web development, similar
to channels in Go [9], event emitters in Node.js [14], and
Scala’s actor model [18]. As with these systems, event-
driven programming in Radiatus comes with a cost: added
complexity in managing long chains of actions. We describe
developer experiences more fully next.

4.2 Applications
In order to explore the expressiveness of our Radiatus frame-
work, we used it to build a number of collaborative applica-
tions. Radiatus fits well with the wide range of web appli-
cations that involve interacting users, including productivity
software, games, social networking, e-commerce, and me-
dia. Because Radiatus is a server-side web framework, de-
velopers are unrestricted in how they design client-side user
interfaces. Figure 7 shows the number of lines of code for
each application we developed using Radiatus.

Academic Social Network: Blizi is an academic social net-
work that allows authors to post papers and solicit reviews
from other users. The application also allows an author to
privately share paper drafts and reviews with certain indi-
viduals. The intent is to allow limited dissemination without
violating anonymous conference reviewing, as might occur
when papers are posted to Facebook or the Web. We have
started to organize one of our seminars around this tool.

File Sharing: FileDrop allows a user to upload files to their
user container. When a friend is granted access to a file, the
friend’s container can retrieve it from the storage service
using the file’s capability. The application can then serve the
file to the friend’s browser.

Chat Messaging: The chat application uses the cross-
container messaging system to relay chat messages between
people. In this particular example, we wrote a custom au-
thentication manager that automatically assigns everyone a
pseudonym and registers them on a global buddy list.

4.3 Porting Existing Applications
We provide a simple tool for bundling existing Node.js li-
braries in Radiatus user containers. However, not all appli-
cations can be easily ported, such as those that use direct
filesystem access. While individual components of an ex-
isting Node.js web application can be ported using the same
tool, any application logic that requires global access to state
must be rewritten to exist within a restricted user container.

Arc Forum: Because the Radiatus container manager works
with operating systems processes, we can port applications

written in other languages, subject to the same limitations
above. We ported the Arc Language Forum [47], the ap-
plication behind the popular Hacker News web application,
to the user container model. The forum is written in Arc,
a dialect of the Lisp programming language that includes a
built-in web server and libraries for generating HTML. The
forum application provides a social news web application
using these language primitives. Because data is persisted to
files, rather than a database, the port required no changes to
Arc Forum, and 188 lines of changes to our user router and
container runtime.

5. Evaluation
Our evaluation asks the following questions to understand
the security and performance of Radiatus. How do user con-
tainers prevent existing classes of attacks (§ 5.1)? Does the
Radiatus implementation provide acceptable performance
given the added overhead of user containers (§ 5.2)? What
is the incremental cost per user (§ 5.3)?

5.1 Security Analysis
Radiatus is designed to reduce vulnerability of user data to
exploits that take advantage of bugs in web server applica-
tion code. To evaluate this, we analyzed all of the vulnera-
bilities in the National Vulnerability Database (NVD) with
a maximum severity score of 10.0 from 2014. The Common
Vulnerability Scoring System (CVSS) is an open industry
standard, which reserves the 10.0 score for the most severe
vulnerabilities that fit 6 criteria: (1) remotely exploitable, (2)
low barrier to access, (3) requires no authentication, (4) total
information disclosure, (5) complete loss of system integrity,
and (6) leads to total loss of availability of the attacked re-
source. Out of all 7316 software vulnerabilities reported in
2014, only 233 received this score. Of these 233, we ana-
lyzed the 40 that involved server-side web software. Many
web applications are proprietary software running on man-
aged infrastructure, and bugs in that software are likely to
be under-reported. As a consequence, we expect Radiatus to
help more cases than those reported in this section.

For each reported bug, we attempted to understand how
the vulnerability affects the web application if the soft-
ware with the vulnerability was translated into the Radiatus
model. Figure 8 lists each vulnerability, its original impact,
and its impact in Radiatus.
• Arbitrary: exploitation leads to arbitrary code execution,

service disruption, and information disclosure;
• Data leak: bug can be leveraged to leak arbitrary informa-

tion, but not run code;
• Prevented: bug cannot manifest in the target system;
• Sandbox: exploitation is limited to a single user’s sand-

boxed container;
• Auth: app developers delegate the responsibility of imple-

menting authentication to Radiatus;
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CVE ID Short Description Original Impact in
Impact Radiatus

Code Injection and Buffer Overflow
CVE-2014-0294♠ MS Forefront 2010 improper email parsing Arbitrary Sandbox
CVE-2014-0474♠ Django improper type conversion Data leak Sandbox
CVE-2014-0650♠ Cisco Secure ACS allows arbitrary shell commands Arbitrary Sandbox
CVE-2014-0787F WellinTech KingSCADA buffer overflow Arbitrary Sandbox
CVE-2014-2866♣ PaperThin CommonSpot uses client-side JavaScript for access restrictions Arbitrary Sandbox
CVE-2014-3496� OpenShift Origin executes arbitrary shell commands in URL Arbitrary Sandbox
CVE-2014-3791F Easy File Sharing Web Server buffer overflow in cookie parsing of vfolder.php Arbitrary Sandbox
CVE-2014-3804 (+5)� AlienVault OSSIM executes arbitrary commands with crafted requests Arbitrary Sandbox
CVE-2014-3829� Centreon Enterprise Server executes arbitrary commands from command line variable Arbitrary Sandbox
CVE-2014-3913F Ericom AccessNow Server buffer overflow in AccessServer32.exe Arbitrary Sandbox
CVE-2014-3915� Tivoli Storage Manager executes arbitrary commands Arbitrary Sandbox
CVE-2014-4121♠ Microsoft .NET improperly parses internationalized resource identifiers Arbitrary Sandbox
CVE-2014-6321F Schannel in Microsoft Windows Server executes arbitrary code via crafted packets Arbitrary Sandbox
CVE-2014-7192♣ Node.js eval injection in syntax-error package Arbitrary Sandbox
CVE-2014-7205♣ Node.js eval injection in internals.batch() of lib/batch.js Arbitrary Sandbox
CVE-2014-7235♠ FreePBX executes arbitrary code via ari auth cookie in htdocs ari/includes/login.php Arbitrary Sandbox
CVE-2014-7249F Allied Telesis buffer overflow via crafted HTTP POST request Arbitrary Sandbox
CVE-2014-8361♠ miniigd SOAP service executes arbitrary code via crafted NewInternalClient request Arbitrary Sandbox
CVE-2014-8661 (+1)N SAP CRM executes arbitrary commands via unspecified vectors Arbitrary Unclear
CVE-2014-9190F Schneider Electric Wonderware InTouch Access Anywhere Server buffer overflow Arbitrary Sandbox
CVE-2014-9371♠ ManageEngine Desktop Central MSP executes arbitrary code via crafted JSON object Arbitrary Sandbox

Path Traversal
CVE-2014-0598] Novell Open Enterprise Server allows directory traversal Unclear Prevented
CVE-2014-0754� SchneiderWEB allows directory traversal Data leak Prevented
CVE-2014-2863 (+1)] PaperThin CommonSpot allows absolute path traversal Unclear Prevented
CVE-2014-3914[ Tivoli Storage Manager allows arbitrary filesystem access Arbitrary Sandbox
CVE-2014-7985[ EspoCRM allows remote include/execute via install/index.php Arbitrary Sandbox
CVE-2014-9373[ ManageEngine NetFlow Analyzer executes arbitrary code via .. in the filename Arbitrary Sandbox

Improper Authentication
CVE-2014-0648♦ Cisco Secure ACS improperly enforces admin access Arbitrary Auth
CVE-2014-2075§ TIBCO Enterprise Administrator improperly enforces admin access Arbitrary Auth
CVE-2014-2609♦ Java Glassfish Admin Console in HP Executive Scorecard doesn’t check authentication Arbitrary Auth
CVE-2014-8329♥ Schrack Technik microControl stores sensitive information publicly in ZTPUsrDtls.txt Arbitrary Auth

SQL Injection
CVE-2014-3828∞ Centreon Enterprise Server SQL injection Data leak Sandbox
CVE-2014-5503∞ Sophos CyberoamOS SQL injection in Guest Login Portal Data leak Sandbox

Figure 8: Security analysis of all 40 web-related vulnerabilities in the National Vulnerability Database from 2014 with the highest severity
score. In most cases, an attacker would be able to arbitrarily affect the service or access data. In Radiatus, we either prevent these attack
entirely, restrict compromise within the user container sandboxes, or are mitigated by the delegation of authentication logic to Radiatus,
which can be shared and independently audited.

• Unclear: bug report did not specify enough details to make
a determination.
In most cases, the original impact allowed an attacker to

arbitrarily affect the service or access data. In Radiatus, we
either prevent the attack entirely, restrict compromise to the
user containers for which the attacker has user credentials,
or require applications to delegate authentication logic to
Radiatus, which can be shared and independently audited.

5.1.1 Code Injection
The majority of high severity vulnerabilities involved code
injection, which allows an attacker to execute arbitrary code
with the privileges of the server process and affect the state
of any user. In Radiatus, packets are only routed to a user
container if the attacker has proper credentials, limiting the
scope of the attack.

• 6 (F) consist of stack-based buffer overflow vulnerabili-
ties, which can be remotely exploited by sending crafted
network requests.

• 7 (♠) allow arbitrary code execution due to improper san-
itization of inputs to components, such as JSON parsers.

• 3 (♣) involve code injection vulnerabilities in JavaScript
(e.g. calling eval(. . . ) in Node.js).

• 9 (�) are vulnerabilities that allow a remote attacker to run
shell commands with the privileges of the server process.

• 2 (N) involve code injection via unspecified vectors.

5.1.2 Path Traversal
Similar in nature to shellcode injection, 7 vulnerabilities in-
volved path traversal bugs (e.g. by adding ../ in the requested
resource). When exploited these bugs can allow an attacker
to read, write, and execute files from the filesystem with the
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privileges of the server process. Radiatus confines all appli-
cation code in per-user sandboxes.
• 1 (�) allows remote attackers to read arbitrary files via

crafted HTTP packets.
• 3 ([) consist of variations where an attacker can execute

arbitrary commands by using ‘../’ to navigate to shell
commands in input parameters.

• 3 (]) are known path traversal vulnerabilities with un-
known impact.

5.1.3 Improper Authentication
4 vulnerabilities involved improper authentication checks.
Most web frameworks require developers to write custom
authorization logic. Flaws in this logic can easily lead to
privilege escalation. In Radiatus, developers delegate au-
thentication checks and enforcement to Radiatus, which can
be independently audited and shared across all applications.
• 1 (♥) stored sensitive credentials in publicly accessible

resources, which attackers can use to obtain privileged
access.

• 2 (♦) do not require authentication to access a privileged
interface.

• 1 (§) does not require authentication to issue arbitrary
commands as an administrator.

5.1.4 SQL Injection
2 vulnerabilities (∞) involve SQL injection, allowing an at-
tacker to exfiltrate data. With Radiatus, the storage guard fil-
ters JavaScript from all commands going into the database
and similarly filters all outgoing data for values not belong-
ing to the authenticated user. SQL injection has become
less common with the prevalence of parameterized client li-
braries. The number of SQL injection vulnerabilities in the
National Vulnerability Database has fallen from its peak of
1476 in 2008 to 261 in 2014.

5.1.5 Other Vulnerabilities

Cross-site scripting: The most common web vulnerability
is cross-site scripting. No cross-site scripting vulnerability
in 2014 had a severity score exceeding 8.0. Radiatus is
not aimed at these vulnerabilities, but our implementation
addresses them by using industry-standard CSP Policies [3].

Cross-container communication: While Radiatus makes
it harder for wide-scale compromise of an application, it
is still possible to use cross-container messaging as a new
attack vector if the attacker can gain access to it (e.g. by
exploiting a code injection vulnerability in the user con-
tainer). We restrict which containers can communicate, en-
force typed interfaces, detect anomalous behavior, restrict
resource consumption, and evict bad actors from the sys-
tem. Browsers [10, 11], operating systems [50], and cloud
providers [2] use similar techniques to protect communica-
tions between mutually distrusting isolated processes.
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Figure 9: Comparison of single web server performance using the
Siege Benchmark to make 1000 parallel connections at a time. Ra-
diatus remains competitive with other frameworks despite handling
requests in isolated user containers.

5.2 Performance
Radiatus is designed to achieve better security at modest
overhead. We evaluated the performance of user containers
on Amazon Web Services using r3.large EC2 instances (2
CPU, 15GB memory, 32GB SSD, $0.175/hr in 2015). We
stress test the performance of a single web server and the
overall throughput of a web service over 500 servers.

Memory Overhead: In Radiatus, each user container is a
sandboxed process, running a separate copy of Node.js, the
Radiatus runtime library, and the web application. When
scaling the number of active users on a single machine,
memory quickly becomes a bottleneck in the context of a
single server. We measured the memory consumption across
100 user containers running our benchmark suite and found
the average container to consume 30.5MB. As such, each
memory-optimized r3.large EC2 instance was able to sup-
port around 490 processes before swapping.

Throughput Microbenchmark: Figure 9 shows the serving
performance of a number of web frameworks for generating
simple dynamic web pages. The serving performance data
was collected using the Siege load testing tool, which simu-
lates 100 users making HTTP requests in parallel. The page
response was an HTML page displaying a simple counter
of how many replies had been served so far. This experi-
ment disables caching while stress testing the HTTP request
handler. While Radiatus performs additional routing to send
requests to the proper container, our system performs com-
parably to existing frameworks and better than some popular
frameworks, such as Ruby on Rails. Because the Radiatus
router was written in Node.js, the microbenchmark shows a
maximum overhead of 60.7% over our baseline. We expect
the relative overhead to be less in a real web application, but
we did not directly test that effect.

Macrobenchmarks: In order to stress test the system at
scale and evaluate the performance of the cross-container
messaging system, we set up a cluster of 500 virtual ma-
chines (VMs) supporting 180,000 user containers, commu-
nicating through the AWS Simple Queuing Service. As a
point of comparison, Wikipedia in 2010 had 205 Apache
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web servers to support 414M readers and 100K active ed-
itors per month, with 2000 HTTP requests per second [24].
In our benchmark, we stress tested our file-sharing applica-
tion under varying workloads. A read request consisted of
a request to the storage guard and a response containing an
item from the user’s personal storage. A write request con-
sisted of sending a message to a peer container through the
message router. Each user container performs either a read
or write request every 4 to 6 seconds. Figure 10 shows the
aggregate throughput of the system with various workloads.
In Radiatus, the global performance can be bottlenecked by
both the database and the message queue. Developers will
need to properly balance these resources to fit the applica-
tion workload.

5.3 Cost Estimation
The largest incremental cost of scaling a web service in Ra-
diatus is the memory overhead of running user containers for
each active user. As reported in § 5.2, a single user container
consumes 30.5MB of memory when running our benchmark
suite. Using average DRAM prices in 2015 [6] and an aver-
age server life of 3 years, we can estimate the incremental
memory cost of an active user to be $0.007/year. To include
the additional cost of CPU overhead, power, and space, we
use current EC2 pricing (2 cores @$0.175/hour). Assuming
1000 requests/day for each user and using the differential
CPU cost of handling requests in Radiatus versus Node.js
from Figure 9, brings the total cost to $0.008/user/year.

In order to estimate the potential cost of scaling such
a system up to traffic levels seen by some of the biggest
web apps today, we can use Little’s Law and publicly re-
ported numbers from the Facebook Newsroom [7]. On aver-
age, Facebook supports 26 million concurrent users on the
site, for an estimated additional annual cost of $200K. Note
that this cost will multiply in a service-oriented architecture,
depending on the number of internal services using Radia-
tus. Compared to the average cost of a data breach recov-
ery in the U.S. ($5.4M [64]), Radiatus may be appropriate

for security-conscious web applications with sensitive high-
value data.

6. Related Work
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Radiatus 7 3 3 3 3 3 3 7 3 7

Process Isolation 7 3 31 31 31 31 31 7 31 7
[31, 54, 55, 62]

IFC 7 72 3 72 72 7 72 3 7 72

[40, 46, 53, 61, 77]

Encryption 7 33 3 73 73 7 33 3 7 33

[45, 65, 66]

Monitoring / Firewall 7 34 7 34 34 7 34 7 34 7
[29, 52, 59, 70, 74]

Browser Isolation 3 7 7 7 7 7 7 7 7 7
[49, 51, 58, 72]

Figure 11: Categories of vulnerabilities mitigated by web applica-
tion security techniques. 1Radiatus expands on these works to make
per-user isolation practical at scale. 2Invalid flows can be blocked,
but potential for compromise still exists. 3While mitigated by data
encryption, bugs of this type remain possible. (e.g deletion through
SQL injection.) 4Intrusion detection systems use heuristics to deny
requests, but potential for compromise remains.

Server-side Frameworks: In Figure 11, we categorize
server-side web security solutions. These impose code struc-
ture limits in exchange for security guarantees.

OKWS [54] and Passe [31] introduce process isolation
within an individual web application, providing protection
boundaries between naturally isolated services (e.g. search),
but stops short of per-user isolation. Passe also introduces
a mechanism for automatically generating a security pol-
icy by monitoring accesses during normal operation. Many
web services now use a service-oriented architecture [19]
for a variety of reasons beyond security. πBox [55] intro-
duces a per-user sandbox that spans a mobile app and web
server; it interposes on all communication between users,
with the goal of providing a end-to-end privacy-preserving
mobile-cloud platform. CLAMP [62] was the first to in-
troduce per-user sandboxes for server-side code execution,
spawning a new virtual machine for each user session. In
order to more easily port existing web applications written
in a shared-everything model, they required that the devel-
oper specify an access control policy that properly limited
each user’s view of the database. Specifying a correct data
policy can easily become intractable when specifying poli-
cies across tables (e.g. link tables for many-to-many rela-
tionships) and across inter-operating internal services. None
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of these systems were evaluated beyond a single machine de-
ployment. Radiatus is the first to apply a capability-based se-
curity model in a shared-nothing architecture for web work-
loads. We evaluate the strengths, weaknesses, and perfor-
mance implications of this model for security-conscious web
applications.

Information flow control (IFC) can be used to limit
the ability of a corrupted application to exfiltrate informa-
tion [53, 77]. Hails [46] uses IFC to track privacy violations
when third-party applications run on data provided by a web
service. PHP Aspis [61] uses IFC to guard against injection
attacks and DBTaint [40] tracks IFC across different appli-
cations. Other web frameworks [32, 69], attach fine-grained
security policies on data. These frameworks assume the ex-
isting centralized model of web development. While IFC
systems can block invalid flows, it does not prevent service
disruption or all forms of exfiltration.

CryptDB [65], Mylar [66] and homomorphic encryp-
tion [45] have been proposed as ways to perform certain
computations over encrypted data. Consequently even if a
service gets compromised, users can rest assured that their
data is safe. These systems place greater limits on behavior
and evolution than does Radiatus.

A few projects have also explored variants of partition-
ing server-side application logic. BStore [33], Lockr [73]
and RemoteStorage [20] provide mechanisms for applica-
tion logic to be detached from storage, allowing storage to
be provided by a third party.

Server-side Monitoring and Code Analysis: A variety of
black box techniques have been proposed to detect attack
signatures [63, 67, 74], block known attack vectors [23,
59, 70], replay attacks [29, 52], and recover state after at-
tacks [34, 35], without modifying the server-side code. How-
ever, recent studies [28] show that black box testing miss
many important vulnerabilities in the wild. Other techniques
analyze source code for vulnerabilities [30, 68, 71, 78], or
use symbolic execution to detect violations of an application
specification [36, 43].

Client-side Browser Security:
Weak isolation is recognized as an important security

problem in web browsers. A variety of browsers [10, 11,
48, 49, 58, 75] and client-side JavaScript libraries [51, 72]
have explored isolation techniques for web applications and
were influential in the Radiatus design. Because Radiatus is
a server-side framework, it is complementary to client-side
isolation.

7. Conclusion
Modern trends in OS-level containers, cost of memory, and
elastic cloud computing make it an opportune time to revisit
per-user isolation and study the costs at scale. Radiatus pro-
vides an alternative model for web application design offer-
ing increased security over existing frameworks. User con-
tainers are a lightweight mechanism to strongly isolate users

within a web application. We show that it is practical to pro-
vide per-user isolation, while offering performance compet-
itive with existing web frameworks, at modest cost per user.
While application design with Radiatus is different from tra-
ditional frameworks, we show that our APIs are expressive
enough to support many of the web applications today.

The web platform already treats the browser as a per-user
isolated container running potentially untrusted code. Lever-
aging this design pattern on the server provides a structured
approach to isolation, offering the same containment we ex-
pect from our own machines, mobile applications, and multi-
tenant data centers.
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